Skip to main content
Log in

Synthesis of N-[3′-(acetylthio)alkanoyl] and N-[3′-mercaptoalkanoyl]-4-α(s)-(phenylmethyl) pyroglutamic acids and prolines as potent ACE inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Angiotensin converting enzyme (ACE) inhibitors have emerged as a revolution in antihypertensive therapy. Introduction of captopril, the first rationally designed ACE inhibitor, has encouraged researchers all over the world to design and synthesize target molecules controlling hypertension based on these lines. It has been observed that replacing proline part of captopril with 4-substituted prolines or 5-oxo-prolines led to significant enhancement in ACE inhibitory activity, and this observation prompted us to design and synthesize N-acyl 4-substituted pyroglutamates and prolinates with the objective of developing therapeutically better ACE inhibitors. Herein we describe an easy approach for N-acylation of 4-α(S)-(phenylmethyl) pyroglutamates with the aim of synthesizing N-[3′-(acetylthio)alkanoyl] and N-[3′-mercaptoalkanoyl]-4-α-(s)-(phenylmethyl) pyroglutamic acids and prolines as ACE inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Alexandrou EN, Liakopoulou-Kyriakides M (1990) Inhibition of angiotensin-converting enzyme by l-alanyl-4 or 5-substituted l-prolines and their N-alpha-phosphoryl-derivatives. Biochem Int 21(2):271–278

    PubMed  CAS  Google Scholar 

  • Biollaz J, Burnier M, Turini GA, Brunner DB, Porchet M, Gomez HJ, Jones KH, Ferber F, Abrams WB, Gavras H, Bruner HR (1981) Three new long acting angiotensin-converting enzyme inhibitors; relationship between plasma converting enzyme activity and pressor response to angiotensin-I. Clin Pharmacol Ther 29:665–670

    PubMed  CAS  Google Scholar 

  • Caubert V, Langlois N (2006) Studies toward the synthesis of salinosporamide A, a potent proteasome inhibitor Tetrahedron Lett 47:4473–4475. doi:10.1016/j.tetlet.2006.04.070 (and references cited therein)

    Google Scholar 

  • Chen X, Du D-M, Hua W-T (2002) Pyroglutamic acid: a versatile building block in asymmetric synthesis. Tetrahedron Asymmetry 13:43–46. doi:10.1016/S0957-4166(02)00052-6

    Article  CAS  Google Scholar 

  • Cushman DW, Cheung HS (1971) Spectroscopic assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648. doi:10.1016/0006-2952(71)90292-9

    Article  CAS  Google Scholar 

  • Cushman DW, Ondetti MA (1980) Inhibitors of angiotensin-converting enzyme. In: Ellis GP, West GB (eds) Progress in Medical Chemistry. Elsevier/North Holland, Amsterdam, pp 17–41

    Google Scholar 

  • Dikshit DK, Panday SK (1992) Aldol reactions of pyroglutamates: chiral synthesis of 4-α(S)- and 4-β(R)-arylmethyl pyroglutamates. J Org Chem 57:1920–1924. doi:10.1021/jo00032a056 (and references cited therein)

    Google Scholar 

  • Dikshit DK, Maheshwari A, Panday SK (1995) Self reproduction of chirality in pyroglutamates; Reactions at α-position with electrophiles. Tetrahedron Lett 36:6131–6134. doi:10.1016/0040-4039(95)01160-J

    Article  CAS  Google Scholar 

  • Herdeis C, Kelm B (2003). A stereoselective synthesis of 3-substituted(S)-pyroglutamic and glutamic acids via OBO ester derivatives. Tetrahedron 59:217–219. doi:10.1016/S0040-4020(02)01490-4 (and references cited therein)

    Google Scholar 

  • Imaki K, Sakuyama S, Okada T, Toda M, Hayashi M, Miyamoto T, Kawasaki A, Okegawa T (1981) Potent orally active inhibitors of angiotensin-converting enzyme (ACE). Chem Pharm Bull (Tokyo) 29:2210–2214

    CAS  Google Scholar 

  • Krapcho J, Turk C, Cushman DW, Powell JR, Deforrest JM, Spitzmiller ER, Karanewsky DS, Duggan M, Rovnyak G, Schwartz J, Natrajan S, Godfrey JD, Ryono DE, Neubeck R, Atwal KS, Petrillo EW Jr (1988) Angiotensin-converting enzyme inhibitors, mercaptan, carboxyalkyl dipeptide and phosphinic acid inhibitors incorporating 4-substituted prolines. J Med Chem 31(6):1148–1160. doi:10.1021/jm00401a014

    Article  PubMed  CAS  Google Scholar 

  • Ksander GM (1984) Abstracts, 19th National Med. Chem. Symposium, Tucson, AZ, June 17–21, 1984, p 20

  • Laragh JH (1980) In: Case DB (ed) Captopril and hypertension. Plenum, New York, p 173

    Google Scholar 

  • Najera C, Yus M (1999) Pyroglutamic acid: a versatile building block in asymmetric Synthesis. Tetrahedron Asymmetry 10:2245–2303. doi:10.1016/S0957-4166(99)00213-X

    Article  CAS  Google Scholar 

  • Ohfune Y, Tomita M (1982) Total synthesis of (−)-domoic acid. A revision of original structure. J Am Chem Soc 104:3511–3513. doi:10.1021/ja00376a048

    Article  CAS  Google Scholar 

  • Ohta T, Hosoi A, Nozoe S (1988) Stereoselective hydroxylation of N-carbamoyl-l-pyroglutamate. Synthesis of (−)-bulgecinine. Tetrahedron Lett 29:329–332. doi:10.1016/S0040-4039(00)80087-8

    Article  CAS  Google Scholar 

  • Ondetti MA, Cushman DW (1981) In: Soffer RL (ed) Biochemical regulation of blood pressure. Wiley, New York, pp 165–204

    Google Scholar 

  • Ondetti MA, Cushman DW (1982) Enzymes of the rennin-angiotensin system and their inhibitors. Ann Rev Biochem 51:283–308. doi:10.1146/annurev.bi.51.070182.001435

    Article  PubMed  CAS  Google Scholar 

  • Ondetti MA, Cushman DW (1984) Angiotensin-converting enzyme inhibitors: biochemical properties and biological actions. CRC Crit Rev Biochem 16:381–411. doi:10.3109/10409238409108720

    Article  PubMed  CAS  Google Scholar 

  • Panday SK, Langlois N (1997) An efficient straight forward synthesis of (−)-bulgecinine. Syn Comm 27(8):1373–1384. doi:10.1080/00397919708006067

    Article  CAS  Google Scholar 

  • Patchett AA, Harris EW, Tristram EW, Wyvratt MJ, Wu MT, Taub D, Peterson ER, Ikeler TJ, Broeke JL, Payne LG, Ondeyka DL, Thorsett ED, Greenlee WJ, Lohr NS, Hoffsommer RD, Joshua H, Ruyle WV, Rothroch JW, Aster SD, Maycock AL, Robinson FM, Hirschmann R, Sweet CS, Ulm EM, Gross DM, Vassil TC, Stone CA (1980) A new class of angiotensin-converting enzyme inhibitors. Nature 288:280–283

    Article  PubMed  CAS  Google Scholar 

  • Peterson JS, Fels G, Rapoport H (1984) Chirospecific synthesis of (+) and (−)-anatoxin a. J Am Chem Soc 106:4539–4547. doi:10.1021/ja00328a040

    Article  Google Scholar 

  • Petrillo EW Jr, Ondetti MA (1982) Angiotensin-converting enzyme inhibitors: medicinal chemistry and biological actions. Med Res Rev 2:1–41. doi:10.1002/med.2610020103

    Article  PubMed  CAS  Google Scholar 

  • Potts D, Stevenson PJ, Thomson N (2000) Expedient synthesis of (+)-trans-5-allyl hexahydroindolizidin-3-one. Tetrahedron Lett 41:275–278. doi:10.1016/S0040-4039(99)02034-1

    Article  CAS  Google Scholar 

  • Rigo B, Lespagnol C, Pauly M (1988) Studies on pyrrolidinones; synthesis of N-acyl pyroglutamic esters with bactericide and fungicide properties. J Heterocycl Chem 25(1):49–59

    Article  CAS  Google Scholar 

  • Smith EM, Swiss GF, Gold Neustadt BR, EH Sommer JA, Brown AD, Chiu PJS, Moran R, Sybertz EJ, Baum TJ (1988) Synthesis and pharmacological activity of angiotensin-converting enzyme inhibitors: N-(mercaptoalkanoyl)-4-substituted-(S)-prolines. Med Chem 31(4):875–885. doi:10.1021/jm00399a033

    Article  CAS  Google Scholar 

  • Smith EM, Swiss GF, Neustadt BR, McNamara P, Gold EH, Sybertz EJ, Baum T (1989) Angiotensin-converting enzyme inhibitors: spirapril and related compounds. J Med Chem 32:1600–1606. doi:10.1021/jm00127a033 (and references cited therein)

    Google Scholar 

  • Suh JT, Skiles JA, Williams BE, Youssefyeh RD, Jones H, Love B, Neiss ES, Schwab A, Mann WS, Khandwala A, Wolf PS, Weinryb MA (1985) Angiotensin converting enzyme inhibitors. New orally active anti hypertensive (mercaptoalkanoyl) and [(acylthio) alkanoyl] glycine derivatives. J Med Chem 28(1):57–66. doi:10.1021/jm00379a013

    Article  PubMed  CAS  Google Scholar 

  • Thottahil JK, Moniot JL, Mueller RH, Wong MKY, Kissick TPJ (1986) Conversion of l-pyroglutamic acid to 4-alkyl substituted-l-prolines: The synthesis of trans-4-cyclohexyl-l-proline. J Org Chem 51:3140–3143. doi:10.1021/jo00366a011

    Article  Google Scholar 

  • Wiecek A, Grzeszczak W (1986) Poly Arch Med Wewn 76(5–6/11–12):291–297

    Google Scholar 

  • Wyratt MA, Patchett AA (1985) Recent developments in the design of angiotensin-converting enzyme inhibitors. Med Res Rev 5:483–531. doi:10.1002/med.2610050405

    Article  Google Scholar 

  • Wyvratt MJ, Tristram EW, Ikeler TJ, Lohr NS, Joshua H, Springer JP, Arison BH, Patchett AA (1984) Chirality in drug research. J Org Chem 49:2816–2819. doi:10.1021/jo00189a036

    Article  CAS  Google Scholar 

  • Zhang X, Jiang W, Schmitt AC (2001) A convenient and versatile synthesis of 6,5 and 7,5-fused bicyclic lactams as peptidomimetics. Tetrahedron Lett 42:4943–4945

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author is thankful to the Central Drug Research Institute, Lucknow, India, for providing infrastructural facilities to carry out above work and to SAIF, CDRI, Lucknow for providing analytical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Kumar Panday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panday, S.K., Dikshit, M. & Dikshit, D.K. Synthesis of N-[3′-(acetylthio)alkanoyl] and N-[3′-mercaptoalkanoyl]-4-α(s)-(phenylmethyl) pyroglutamic acids and prolines as potent ACE inhibitors. Med Chem Res 18, 566–578 (2009). https://doi.org/10.1007/s00044-008-9150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-008-9150-z

Keywords

Navigation