Skip to main content
Log in

A comparative tunnelling network approach to assess interspecific competition effects in termites

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

We study the tunnelling network dynamics of two morphologically and ecologically very similar native termite species from the Brazilian Cerrado, Cornitermes cumulans and Procornitermes araujoi, both when they are digging alone or when their tunnel networks can meet. Their network topologies have the same geometrical properties with only slight differences in digging speed and branching rates. Petri dish laboratory assays show that the two species have a strong potential for interference competition. However, encounters between the two tunnelling networks produce no measurable effect on the level of the total network growth dynamics. A brief fighting erupts in the meeting zone with some increased mortality and territorial gains or losses on both sides. This aggressive encounter is quickly ended by walling off the gap between the two networks. Tunnel speed analysis of the last 5 mm before an encounter shows some evidence that at least one species, P. araujoi, detects the presence of the competitor even before actually breaking into their tunnels. We compare these results to those found in invasive termite species and discuss them in the species’ ecological context: their strategies might be linked to the well-known r- and K-strategy concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams E.S. and Levings S.C. 1987. Territory size and population limits in mangrove termites. J. Anim. Ecol. 56: 1069-1081.

    Google Scholar 

  • Arab A. and Costa-Leonardo A.M. 2005. Effect of biotic and abiotic factors on the tunneling behavior of Coptotermes gestroi and Heterotermes tenuis (Isoptera: Rhinotermitidae). Behav. Proc. 70: 32-40.

    Google Scholar 

  • Araujo R.L. 1970. Termites of the neotropical region. In: Biology of Termites vol II (Krishna K. and Weesner F.M., Eds), Academic Press, pp 527-576.

  • Bardunias P. and Su N.Y. 2005. Comparison of tunnel geometry of subterranean termites (Isoptera: Rhinotermitidae) in “Two-dimensional” and “Three-dimensional” arenas. Sociobiology 45: 679-685.

    Google Scholar 

  • Bardunias P. and Su N.Y. 2009a. Dead reckoning in tunnel propagation of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 102: 158–165.

  • Bardunias P and Su N.Y. 2009b. Opposing headings of excavating and depositing termites facilitate branch formation in the Formosan subterranean termite. Anim. Behav. 78: 755-759.

  • Barros Ferreira M.F. de. 1994. Os ninhos de Cornitermes cumulans (Kollar, 1832) e Cornitermes bequaerti (Emerson, 1952) (Isoptera: Termitidae): estrutura, população e animais associados. Doctoral thesis, Universidade Estadual Paulista, Botucatu, Brasil.

  • Begon M., Mortimer M. and Thompson D.J. 1996. Population Ecology: a Unified Study of Animals and Plants. 3 edn., Blackwell Science.

  • Buhl J., Gautrais J., Deneubourg J.L. and Theraulaz G. 2004. Nest excavation in ants: group size effects on the size and structure of tunneling networks. Naturwissenschaften 91: 602-606.

    Google Scholar 

  • Chouvenc T., Bardunias P., Li H.F., Elliott M.L. and Su N.Y. 2011. Planar arenas for use in laboratory bioassay studies of subterranean termites (Rhinotermitidae). Fla. Entomol. 94: 817-826.

    Google Scholar 

  • Coles de Negret H.R. and Redford K.H. 1982. The biology of nine termite species (Isoptera: Termitidae) from the cerrado of central Brazil. Psyche 89: 81-106.

    Google Scholar 

  • Constantino R. 1998. Catalog of the living termites of the New World (Insecta: Isoptera). Arq. Zool. 35: 135-231.

    Google Scholar 

  • Cornelius M.L. and Osbrink W.L.A. 2010. Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 103: 799-807.

    Google Scholar 

  • Costa-Leonardo A.M. and Espírito Santo Filho K. 2004. Occurrence of polygyny in Procornitermes araujoi (Termitidae, Nasutitermitinae). Sociobiology 44: 1-8.

  • Cressman R., Dash A.T. and Akin E. 1986. Evolutionary games and two species population dynamics. J. Math. Biol. 23: 221-230.

    Google Scholar 

  • Csárdi G. and Nepusz T. 2006. The igraph software package for complex network research. InterJournal, Complex Systems 1695, URL http://www.interjournal.org/manuscript_abstract.php?361100992.

  • Donovan S.E., Eggleton P. and Bignell D.E. 2001. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26: 3356–366.

    Google Scholar 

  • Efron B. and Tibshirani R.J. 1993. An Introduction to the Bootstrap. Chapman and Hall, London, New York.

  • Espinoza D.N., Santamarina J.C. 2010. Ant tunneling - a granular media perspective. Granul. Matter 12: 607-616.

    Google Scholar 

  • Evans T.A., Inta R., Lai J.C.S., Prueger S., Foo N.W., Fu E.W. and Lenz M. 2009. Termites eavesdrop to avoid competitors. Proc. Biol. Sci. 276: 4035-4041.

    Google Scholar 

  • Fernandes P.M., Czepak C. and Veloso V.R.S. 1998. Cupins de montículos em pastagens: prejuízo real ou praga estética? In: Cupins. O desafio do Conhecimento (Fontes L.R. and Berti Filho E., Eds), FEALQ, Av. Carlos Botelho 1025, 13416-145 Piracicaba, SP – Brasil, pp 187-210.

  • Fox J.W. and Morin P.J. 2001. Effects of intra- and interspecific interactions on species responses to environmental change. J. Anim. Ecol. 70: 80-90.

    Google Scholar 

  • Gerbier G., Garnier S., Rieu C., Theraulaz G. and Fourcassié V. 2008. Are ants sensitive to the geometry of tunnel bifurcation? Anim. Cogn. 11: 637-642.

    Google Scholar 

  • Grassé P.P. 1986. Termitologia, tome 3: Comportement, Socialité-Ecologie, Evolution, Systématique. Masson, Paris.

  • Grohmann C., Oldeland J., Stoyan D. and Linsenmair K.E. 2010. Multi-scale pattern analysis of a mound-building termite species. Insect. Soc. 57: 477-486.

    Google Scholar 

  • Grosholz E.D. 1992. Interactions of intraspecific, interspecific, and apparent competition with host-pathogen population dynamics. Ecology 73: 507-514.

    Google Scholar 

  • Haccou P. and Meelis E. 1992. Statistical Analysis of Behavioural Data: an Approach Based on Time Structured Models. Oxford University Press.

  • Haifig I., Jost C., Janei V. and Costa-Leonardo A.M. 2011. The size of excavators within a polymorphic termite species governs tunnel topology. Anim. Behav. 82: 1409-1414.

    Google Scholar 

  • Haverty M.I. 1977. The proportion of soldiers in termite colonies: a list and a bibliography. Sociobiology 2:199-217.

    Google Scholar 

  • Hertel H., Posacki E. and Plarre R. 2010. Directional orientation of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 56: 223-233.

    Google Scholar 

  • Inward D.J.G., Vogler A.P. and Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44: 953-967.

    Google Scholar 

  • Jackson D.E., Holcombe M. and Ratnieks F.L.W. 2004. Trail geometry gives polarity to ant foraging networks. Nature 432: 907-909.

    Google Scholar 

  • Jmhasly P. and Leuthold R.H. 1999. The system of underground passages in Macrotermes subhyalinus and comparison of laboratory bioassays to field evidence of intraspecific encounters in M. subhyalinus and M. bellicosus (Isoptera, Termitidae). Insect. Soc. 46: 332-340.

  • Jones S.C. and Trosset M.W. 1991. Interference competition in desert subterranean termites. Entomol. Exp. Appl. 61: 83-90.

    Google Scholar 

  • Jost C., Lawrence C., Campolongo F., van de Bund W., Hill S. and DeAngelis D.L. 2004. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor. Pop. Biol. 66: 37-51.

    Google Scholar 

  • Korb J. and Foster K.R. 2010. Ecological competition favours cooperation in termite societies. Ecol. Lett. 13: 754-760.

    Google Scholar 

  • Korb J. and Linsenmair K.E. 2001a. The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies. Oecologia 127: 324-333.

  • Korb J. and Linsenmair K.E. 2001b. Resource availability and distribution patterns, indicators of competition between Macrotermes bellicosus and other macro-detritivores in the Comoé National Park, Côte d’Ivoire. Afr. J. Ecol. 39: 257-265.

  • Laffont E.R., Torales G.J., Porcel E. and Coronel J.M. 1998. Disposición espacial de termiteros de Cornitermes cumulans (Isoptera, Termitidae, Nasutitermitinae) en sitios puntuales de muestreo. Natura Neotropicalis 29: 51-58.

    Google Scholar 

  • Lee S.H., Bardunias P. and Su N.Y. 2006. Food encounter rates of simulated termite tunnels with variable food size/distribution pattern and tunnel branch length. J. Theor. Biol. 243: 493-500.

    Google Scholar 

  • Lee S.H., Bardunias P. and Su N.Y. 2007. Optimal length distribution of termite tunnel branches for efficient food search and resource transportation. Biosystems 90: 802-807.

    Google Scholar 

  • Lee S.H., Yang R.L. and Su N.Y. 2008. Tunneling response of termites to a pre-formed tunnel. Behav. Proc. 79: 192-194.

    Google Scholar 

  • Legendre F., Whiting M.F., Bordereau C., Cancello E.M., Evans T.A. and Grandcolas P. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogen. Evol. 48: 615-627.

    Google Scholar 

  • Leponce M., Roisin Y. and Pasteels J.M. 1996. Intraspecific interactions in a community of arboreal nesting termites (Isoptera: Termitidae). J. Insect Behav. 9: 799-817.

    Google Scholar 

  • Levings S.C. and Adams E.S. 1984. Intra- and interspecific territoriality in Nasutitermes (Isoptera: Termitidae) in a Panamanian mangrove forest. J. Anim. Ecol. 53: 705-714.

    Google Scholar 

  • Li H.F., Yang R.L. and Su N.Y. 2010. Interspecific competition and territory defense mechanisms of Coptotermes formosanus and Coptotermes gestroi (Isoptera: Rhinotermitidae). Environ. Entomol. 39: 1601-1607.

    Google Scholar 

  • Perna A., Jost C., Couturier E., Valverde S., Douady S. and Theraulaz G. 2008a. The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography. Naturwissenschaften 95: 877-884.

  • Perna A., Valverde S., Gautrais J., Jost C., Solé R.V., Kuntz P. and Theraulaz G. 2008b. Topological efficiency in three-dimensional gallery networks of termite nests. Physica A 387: 6235-6244.

  • Persson L.1983. Effects of intra- and interspecific competition on dynamics and size structure of a perch Perca fluviatilis and a roach Rutilus rutilus population. Oikos 41: 126-132.

  • R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org, ISBN 3-900051-07-0.

  • Ricklefs R.E. and Miller G.L. 2000. Ecology. 4 edn. WH Freeman, New York.

  • Robson S.K.A., Lesniak M.G., Kothandanpani R.V., Traniello J.F.A., Thorne B.L. and Fourcassié V. 1995. Nonrandom search geometry in subterranean termites. Naturwissenschaften 82: 526-528.

    Google Scholar 

  • Schuurman G. and Dangerfield J.M. 1995. Assessment of intraspecific aggression in Macrotermes michaelseni (Isoptera: Macrotermitinae). Sociobiology 26: 33-38.

    Google Scholar 

  • Schuurman G. and Dangerfield J.M. 1997. Dispersion and abundance of Macrotermes michaelseni colonies: a limited role for interspecific competition. J. Trop. Ecol. 13: 39-49.

    Google Scholar 

  • Su N.Y. and Lee S.H. 2009. Tunnel volume regulation and group size of subterranean termites (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 102: 1158-1164.

    Google Scholar 

  • Thorne B.L. 1991. A review of intercolony, intraspecific and interspecific agonism in termites. Sociobiology 19: 115-145.

    Google Scholar 

  • Toffin E., Di Paolo D., Campo A., Detrain C. and Deneubourg J.-L. 2009. Shape transition during nest digging in ants. Proc. Natl Acad. Sci. USA 44: 18616-18620.

    Google Scholar 

  • Torales G.J. 1982-84. Contribución al conocimiento de las termites de argentina (Pcia. de corrientes). Cornitermes cumulans (Isoptera: Termitidae). Facena 5: 97-133.

  • Verza S.S., Forti L.C., Lopes J.F.S. and Hughes W.O.H. 2007. Nest architecture of the leaf-cutting ant Acromyrmex rugosus rugosus. Insect. Soc. 54: 303-309.

    Google Scholar 

  • Zar J.H. 1999. Biostatistical Analysis. 4 Ed, Prentice Hall, New Jersey.

Download references

Acknowledgments

We thank two anonymous reviewers for their very helpful comments. C. Jost acknowledges financial aid for travelling and experiments from a CAPES/Cofecub Brazil–France cooperation grant (No. 633/09), co-financing by the French ANR Project MESOMORPH (grant ANR-06-BYOS-0008) and a travel grant from Université Paul Sabatier, Toulouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, C., Haifig, I., de Camargo-Dietrich, C.R.R. et al. A comparative tunnelling network approach to assess interspecific competition effects in termites. Insect. Soc. 59, 369–379 (2012). https://doi.org/10.1007/s00040-012-0229-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-012-0229-7

Keywords

Navigation