Skip to main content
Log in

Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Parameter identification (PI) is very important in system analysis and controller design and has wide applications in industry. PI is an essential step in designing mathematical models of the dynamical systems based on the measured data. Identification of chaotic systems is very challenging due to the butterfly effect. Recently, a state-space-based cost function based on Gaussian mixture model (GMM) has been proposed for the PI of the chaotic systems. In there, a GMM as a statistical model of the measured data modeled static features of the chaotic attractors in the state space. In this paper, we propose a new method which incorporates static and dynamic features in the GMM modeling in order to achieve a better cost function for the PI problem. The proposed method can extract suitable information from the trajectory of the chaotic attractor. We conduct some experiments for one-dimensional PI. Using measured data from 4D and 3D chaotic systems, empirical results indicate success of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Aho, D. Derryberry, T. Peterson, Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95(3), 631–636 (2014)

    Article  Google Scholar 

  2. C.M. Bishop, Pattern recognition. Mach. Learn. 128, 1–58 (2006)

    Google Scholar 

  3. F. Deng, J. Chen, C. Chen, Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects. J. Syst. Eng. Electron. 24(4), 655–665 (2013)

    Article  Google Scholar 

  4. F. Ding, X. Wang, Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems. Circuits Syst. Signal Process. 36(4), 1393–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Ding, Y. Wang, J. Dai, Q. Li, Q. Chen, A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input–output data filtering. J. Franklin Inst. 354(15), 6938–6955 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Q. He, L. Wang, B. Liu, Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 34(2), 654–661 (2007)

    Article  MATH  Google Scholar 

  7. R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2000)

    Book  MATH  Google Scholar 

  8. A. Jafari, F. Almasganj, Using nonlinear modeling of reconstructed phase space and frequency domain analysis to improve automatic speech recognition performance. Int. J. Bifurc Chaos 22(03), 1250053 (2012)

    Article  Google Scholar 

  9. S. Jafari, S.M.R. Hashemi Golpayegani, A. Daliri, Comment on ‘Parameters identification of chaotic systems by quantum-behaved particle swarm optimization’[Int. J. Comput. Math. 86 (12)(2009), pp. 2225–2235]. Int. J. Comput. Math. 90(5), 903–905 (2013)

    Article  MathSciNet  Google Scholar 

  10. S. Jafari, S.M.R. Hashemi Golpayegani, A.H. Jafari, S. Gharibzadeh, Some remarks on chaotic systems. Int. J. Gen. Syst. 41(3), 329–330 (2012)

    Article  MATH  Google Scholar 

  11. S. Jafari, S.M.R. Hashemi Golpayegani, M. Rasoulzadeh Darabad, Comment on “Parameter identification and synchronization of fractional-order chaotic systems”[Commun Nonlinear Sci Numer Simulat 2012; 17: 305–16]. Commun. Nonlinear Sci. Numer. Simul. 18(3), 811–814 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.T. Johnson, R.J. Povinelli, A.C. Lindgren, J. Ye, X. Liu, K.M. Indrebo, Time-domain isolated phoneme classification using reconstructed phase spaces. IEEE Trans. Speech Audio Process. 13(4), 458–466 (2005)

    Article  Google Scholar 

  13. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, vol. 7 (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  14. J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning, ed. by C. Sammut, G.I. Webb (Springer, Boston, MA, 2011), pp. 760–766. https://doi.org/10.1007/978-0-387-30164-8_630

    Google Scholar 

  15. J. Kuha, AIC and BIC: Comparisons of assumptions and performance. Sociol. Methods Res. 33(2), 188–229 (2004)

    Article  MathSciNet  Google Scholar 

  16. S.-K. Lao, Y. Shekofteh, S. Jafari, J.C. Sprott, Cost function based on Gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int. J. Bifurc. Chaos 24(01), 1450010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Li, Y. Yang, H. Peng, X. Wang, Parameters identification of chaotic systems via chaotic ant swarm. Chaos Solitons Fractals 28(5), 1204–1211 (2006)

    Article  MATH  Google Scholar 

  18. M. Li, X. Liu, F. Ding, The gradient-based iterative estimation algorithms for bilinear systems with autoregressive noise. Circuits Syst. Signal Process. 36(11), 4541–4568 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Nakagawa, L. Wang, S. Ohtsuka, Speaker identification and verification by combining MFCC and phase information. IEEE Trans. Audio Speech Lang. Process. 20(4), 1085–1095 (2012)

    Article  Google Scholar 

  20. Y. Shekofteh, F. Almasganj, A. Daliri, MLP-based isolated phoneme classification using likelihood features extracted from reconstructed phase space. Eng. Appl. Artif. Intell. 44, 1–9 (2015)

    Article  Google Scholar 

  21. Y. Shekofteh, F. Almasganj, Feature extraction based on speech attractors in the reconstructed phase space for automatic speech recognition systems. ETRI J. 35(1), 100–108 (2013)

    Article  Google Scholar 

  22. Y. Shekofteh, F. Almasganj, Using phase space based processing to extract proper features for ASR systems, in Telecommunications (IST), 2010 5th International Symposium on 2010. IEEE, pp. 596–599

  23. Y. Shekofteh, S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, F. Almasganj, A gaussian mixture model based cost function for parameter estimation of chaotic biological systems. Commun. Nonlinear Sci. Numer. Simul. 20(2), 469–481 (2015)

    Article  MathSciNet  Google Scholar 

  24. Y. Tang, X. Guan, Parameter estimation for time-delay chaotic system by particle swarm optimization. Chaos Solitons Fractals 40(3), 1391–1398 (2009)

    Article  MATH  Google Scholar 

  25. L. Wang, Y. Xu, An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 38(12), 15103–15109 (2011)

    Article  Google Scholar 

  26. X. Wang, F. Ding, Joint estimation of states and parameters for an input nonlinear state-space system with colored noise using the filtering technique. Circuits Syst. Signal Process. 35(2), 481–500 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. D.S. Weile, E. Michielssen, Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans. Antennas Propag. 45(3), 343–353 (1997)

    Article  Google Scholar 

  28. G. Xu, Y. Shekofteh, A. Akgül, C. Li, S. Panahi, A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation. Entropy 20(2), 86 (2018)

    Article  Google Scholar 

  29. L. Xu, F. Ding, Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018)

    Article  MathSciNet  Google Scholar 

  30. L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)

    Article  MATH  Google Scholar 

  31. L. Xu, W. Xiong, A. Alsaedi, T. Hayat, Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. 16(4), 1756–1764 (2018)

    Article  Google Scholar 

  32. L. Xu, The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1687814017730003 (2017)

    Google Scholar 

  33. X. Yao, Y. Liu, Fast evolutionary programming, in Proceedings of the fifth annual conference on evolutionary programming (MIT Press, 1996), pp. 451–460

  34. H. Zhang, B. Li, J. Zhang, Y. Qin, X. Feng, B. Liu, Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft. Comput. 20(12), 4965–4980 (2016)

    Article  Google Scholar 

  35. X. Zhang, F. Ding, F.E. Alsaadi, T. Hayat, Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the research Grant from Shahid Beheshti University G.C. (SAAD-600-1076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Shekofteh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekofteh, Y., Jafari, S., Rajagopal, K. et al. Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space. Circuits Syst Signal Process 38, 2039–2054 (2019). https://doi.org/10.1007/s00034-018-0967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0967-5

Keywords

Navigation