Skip to main content
Log in

A Novel Exponential Approximation with \(\pm 0.21\,\hbox {dB}\) Error for Realizing an Improved CMOS Exponential Function Generator

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

An Erratum to this article was published on 14 February 2017

Abstract

A new modified pseudo-Taylor exponential approximation is presented for realizing a current-to-current exponential function generator. The proposed approximation for exponential function generation has been implemented using translinear principle of MOSFETs operating in weak inversion region. The SPECTRE simulation tool from Cadence, with 180 nM CMOS process parameters, has been utilized for testing the workability of the CMOS implementation of the proposed approximation, which uses only \(\pm 0.5\hbox {V}\) power supply. The post-layout simulation results of the proposed CMOS exponential generator, thus, consume only \({\approx }119\,\hbox {nW}\) power and produce 51.6 dB range of linear-in-dB output with only \(\pm 0.21\,\hbox {dB}\) error while occupying an area of \(0.26\,\upmu \hbox {m}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. While the extension of 3 dB frequency of the proposed exponential generator can be left to future research for utilizing them in high-frequency applications of AGC/VGA such as WLAN receivers, CDMA/WCDMA receivers, GPS receivers and disk drive electronics, nevertheless, the biomedical signals (for instance, ECG or EEG), which are of low-frequency range, e.g., see  [9, 11, 20], it can more effectively be processed through amplifiers of the analog front ends in biomedical electronic systems, utilizing the proposed exponential generator. Also, our proposition, with other notable superior features, suites more to many implantable miniature biodevices, namely hearing aids and pacemakers.

References

  1. K.M. Al-Tamimi, M.A. Al-Absi, A \(6.13\mu \text{ W }\) and 96 dB CMOS exponential generator. IEEE Trans. VLSI Syst. 22(11), 2440–2445 (2014)

    Article  Google Scholar 

  2. T. Arthansiri, V. Kasemsuwan, Current-mode pseudo-exponential-control variable-gain amplifier using fourth-order Taylor’s series approximation. Electron. Lett. 42(7), 379–380 (2006)

    Article  Google Scholar 

  3. D.M. Binkley, Tradeoffs and Optimization in Analog CMOS Design (Wiley, New York, 2007)

    Book  Google Scholar 

  4. F. Carrara, O. Filoramo, G. Palmisano, High-dynamic range variable-gain amplifier with temperature compensation and linear-in-decibel gain control. Electron. Lett. 40(6), 363–364 (2004)

    Article  Google Scholar 

  5. C.-C. Chang, S.-I. Liu, Current-mode pseudo-exponential circuit with tunable input range. Electron. Lett. 36(16), 1335–1336 (2000)

    Article  Google Scholar 

  6. C.-C. Chang, S.-I. Liu, Pseudo-exponential function for MOSFETs in saturation. IEEE Trans. Circuits Syst.-II Analog Digit. Signal Process 47(11), 1318–1321 (2000)

    Article  Google Scholar 

  7. I. Choi, H. Seo, B. Kim, Accurate dB-linear variable gain amplifier with gain error compensation. IEEE J. Solid-State Circuits 48(2), 456–464 (2013)

    Article  Google Scholar 

  8. Q.-H., Duong, T.-K. Nguyen, S.-G. Lee, in dB-Linear V-I converter with tunable input and output range. Proceedings of IEEE 46th Midwest Symposium 1, pp. 201–204 (2012)

  9. A. Eftekhar, S. Paraskevopoulou, T. Constandinou, in Towards a next generation neural interface: optimizing power, bandwidth and data quality, Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 122–125 (2010)

  10. M. Gupta, R. Pandey, Low-voltage FGMOS based analog building blocks. Microelectron J 42(6), 903–912 (2011)

    Article  Google Scholar 

  11. R.R. Harrison, C. Charles, A low-noise CMOS amplifier for neural recording applications. IEEE J. Sol. State Circuits 38(6), 958–965 (2003)

    Article  Google Scholar 

  12. V. Kalenteridis, S. Vlassis, S. Siskos, A CMOS linear-in-dB VGA based on exponential current generator. 6th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1-4 (2011)

  13. V. Kalenteridis, S. Vlassis, S. Siskos, 1.5-V CMOS exponential current generator. Analog Integr. Circuits Signal Process 72(2), 333–341 (2012)

    Article  Google Scholar 

  14. C.-H. Kao, W.-P. Lin, C.-S. Hsieh, Low-voltage low-power current mode exponential circuit. IEE Proc. Circuits Dev. Syst. 3, 633–635 (2005)

    Article  Google Scholar 

  15. N.V. Karanjakar, R.R. Sahoo, M.S. Baghini, Improved accuracy pseudo-exponential function generator with applications in analog signal processing. IEEE Trans. VLSI Syst. 18(9), 1381–1383 (2010)

    Article  Google Scholar 

  16. Y. Karimi, A. Abrishamifar, in A low power configurable analogue block. Proc. 19th ICEE, pp. 1–5 (2011)

  17. M. Kumngern, J. Chanwutitum, K. Dejhan, in Simple CMOS current-mode exponential function generator circuit. Proc. Of ECTI-CON, pp. 709–711 (2008)

  18. B. Minch, Synthesis of static and dynamic multiple-input translinear element networks. IEEE Trans. Circuits Syst-I, Reg. Pap. 51(2), 409–421 (2004)

    Article  MathSciNet  Google Scholar 

  19. A. Motamed, C. Hwang, M. Ismail, A low-voltage low-power wide-range CMOS variable gain amplifier. IEEE Trans. Circuits Syst.-II Analog Digital Signal Process 45(7), 800–811 (1998)

    Article  Google Scholar 

  20. S.E. Paraskevopoulou, T.G. Constandinou, in An ultra-low-powerfront-end neural interface with automatic gain for uncalibrated monitoring, 2012 IEEE International Symposium on Circuits and Systems (South Korea, Seoul, 2012), pp. 193–196

  21. S.S. Rajput, S. Jamuar, Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 2(1), 24–42 (2002)

    Article  Google Scholar 

  22. E. Seevinck, R. Wiegerink, Generalized translinear circuit principle. IEEE J. Sol.-State Circuits. 26(8), 1098–1102 (1991)

    Article  Google Scholar 

  23. R. Senani, D.R. Bhaskar, V.K. Singh, R.K. Sharma, Chapter-9 of Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks (Springer, Berlin, ISBN 978-3-319-23711-4, 2016)

  24. S. Vlassis, CMOS current-mode pseudo-exponential function circuit. Electron. Lett. 37(8), 471–472 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Kumar Sharma.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00034-017-0509-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Sharma, R.K. A Novel Exponential Approximation with \(\pm 0.21\,\hbox {dB}\) Error for Realizing an Improved CMOS Exponential Function Generator. Circuits Syst Signal Process 36, 2941–2957 (2017). https://doi.org/10.1007/s00034-016-0451-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0451-z

Keywords

Navigation