Skip to main content
Log in

Gain-Constrained Extended Kalman Filtering with Stochastic Nonlinearities and Randomly Occurring Measurement Delays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the gain-constrained extended Kalman filtering problem is studied for discrete time-varying nonlinear system with stochastic nonlinearities and randomly occurring measurement delays. Both deterministic and stochastic nonlinearities are simultaneously present in the model, where the stochastic nonlinearities are described by first moment and can encompass several classes of well-studied stochastic nonlinear functions. A diagonal matrix composed of mutually independent Bernoulli random variables is introduced to reflect the phenomenon of randomly occurring measurement delays caused by unfavorable network conditions. The aim of the addressed filtering problem is to design a finite-horizon recursive filter such that, for all stochastic nonlinearities, randomly occurring measurement delays and gain constraint, the upper bound of the cost function involving filtering error is minimized at each sampling time. It is shown that the filter gain is obtained by solving matrix equations. A numerical simulation example is provided to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.D.O. Anderson, J.B. Moore, Optimal filtering (Prentice-Hall, Upper Saddle River, 1979)

    MATH  Google Scholar 

  2. A.N. Bishop, A.V. Savkin, P.N. Pathirana, Vision-based target tracking and surveillance with robust set-valued state estimation. IEEE Signal Process. Lett. 17(3), 289–292 (2010)

    Article  Google Scholar 

  3. G. Calafiore, Reliable localization using set-valued nonlinear filters. IEEE Trans. Syst. Man Cybern. A 35(2), 189–197 (2005)

    Article  MathSciNet  Google Scholar 

  4. J. Chandrasekar, D.S. Bernstein, O. Barrero, B.L.R. De Moor, Kalman filtering with constrained output injection. Int. J. Control 80(12), 1863–1879 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Chen, B. Chen, Z. Hong, Energy-efficient weighted observation fusion Kalman filtering with randomly delayed measurements. Circuits Syst. Signal Process. 33(10), 3299–3314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.K. Chui, G. Chen, Kalman filtering: with real-time applications (Springer, Berlin, 2009)

    MATH  Google Scholar 

  7. M. Darouach, M. Zasadzinski, M. Boutayeb, Extension of minimum variance estimation for systems with unknown inputs. Automatica 39(5), 867–876 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Dong, Z. Wang, D.W.C. Ho, H. Gao, Variance-constrained \(H_{\infty }\) filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case. IEEE Trans. Signal Process. 58(5), 2534–2543 (2010)

    Article  MathSciNet  Google Scholar 

  9. J. Feng, Z. Wang, M. Zeng, Recursive robust filtering with finite-step correlated process noises and missing measurements. Circuits Syst. Signal Process. 30(6), 1355–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Gupta, R. Hauser, Kalman filtering with equality and inequality state constraints. Numerical Analysis Group, Oxford University Computing Laboratory, University of Oxford, Oxford, UK, Tech. Rep. 07/18 (2007) http://www.arxiv.org/abs/0709.2791

  11. A.J. Hashmi, A. Eftekhar, A. Adibi, A Kalman filter based synchronization scheme for telescope array receivers in deep-space optical communication links. Opt. Commun. 285(24), 5037–5043 (2012)

    Article  Google Scholar 

  12. R.A. Horn, C.R. Johnson, Topic in matrix analysis (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  13. J. Hu, D. Chen, J. Du, State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays. Int. J. Gen. Syst. 43(3–4), 387–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Hu, Z. Wang, H. Gao, Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises. Automatica 49(11), 3440–3448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Hu, Z. Wang, H. Gao, L.K. Stergioulas, Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements. Automatica 48(9), 2007–2015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Hu, Z. Wang, H. Gao, L.K. Stergioulas, Probability-guaranteed H-infinity finite-horizon filtering for a class of nonlinear time-varying systems with sensor saturation. Syst. Control Lett. 61(4), 477–484 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Hu, Z. Wang, B. Shen, H. Gao, Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements. Int. J. Control 86(4), 650–663 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Hu, Z. Wang, B. Shen, H. Gao, Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays. IEEE Trans. Signal Process. 61(5), 1230–1238 (2013)

    Article  MathSciNet  Google Scholar 

  19. S. Kluge, K. Reif, M. Brokate, Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans. Autom. Control 55(2), 514–518 (2010)

    Article  MathSciNet  Google Scholar 

  20. J. Ma, S. Sun, Optimal linear estimators for systems with random sensor delays, multiple packet dropouts and uncertain observations. IEEE Trans. Signal Process. 59(11), 5181–5192 (2011)

    Article  MathSciNet  Google Scholar 

  21. H. Qian, W. Huang, B. Liu, C. Shen, A robust recursive filter for nonlinear systems with correlated noises, packet losses, and multiplicative noises. Math. Probl. Eng. 2014, 1–12 (2014)

  22. H. Rezaei, R.M. Esfanjani, M.H. Sedaaghi, Improved Kalman filtering for systems with randomly delayed and lost measurements. Circuits Syst. Signal Process. 33(7), 2217–2236 (2014)

    Article  MathSciNet  Google Scholar 

  23. B.O.S. Teixeira, J. Chandrasekar, H.J. Palanthandalam-Madapusi, L.A.B. Tôrres, L.A. Aguirre, D.S. Bernstein, Gain-constrained Kalman filtering for linear and nonlinear systems. IEEE Trans. Signal Process. 56(9), 4113–4123 (2008)

    Article  MathSciNet  Google Scholar 

  24. Y. Theodor, U. Shaked, Robust discrete-time minimum-variance filtering. IEEE Trans. Signal Process. 44(2), 181–189 (1996)

    Article  MathSciNet  Google Scholar 

  25. X. Wang, Y. Liang, Q. Pan, F. Yang, A Gaussian approximation recursive filter for nonlinear systems with correlated noises. Automatica 48(9), 2290–2297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Z. Wang, B. Shen, X. Liu, \(H_{\infty }\) filtering with randomly occurring sensor saturations and missing measurements. Automatica 48(3), 556–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Wei, Z. Wang, H. Shu, Robust filtering with stochastic nonlinearities and multiple missing measurements. Automatica 45(3), 836–841 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Xie, Y.C. Soh, C.E. de Souza, Robust Kalman filtering for uncertain discrete-time systems. IEEE Trans. Autom. Control 39(6), 1310–1314 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Xiong, L. Liu, Y. Liu, Robust extended Kalman filtering for nonlinear systems with multiplicative noises. Optim. Control Appl. Meth. 32(1), 47–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Yang, Z. Wang, G. Feng, X. Liu, Robust filtering with randomly varying sensor delay: the finite-horizon case. IEEE Trans. Circuits Syst. I Regul. Pap. 56(3), 664–672 (2009)

    Article  MathSciNet  Google Scholar 

  31. Y. Yaz, E. Yaz, A new formulation of some discrete-time stochastic parameter state estimation problems. Appl. Math. Lett. 10(6), 13–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Zhang, G. Feng, G. Duan, X. Lu, \(H_{\infty }\) filtering for multiple time-delay measurements. IEEE Trans. Signal Process. 54(5), 1681–1688 (2006)

    Article  Google Scholar 

  33. G. Zhang, Y. Wei, Non-fragile \(H_{\infty }\) filter design for uncertain stochastic nonlinear time-delay Markovian jump systems. Circuits Syst. Signal Process. 33(11), 3389–3419 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China under Grant 61233005 and National 973 Project under Grant 2014CB744200. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers and editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhao, J., Zhao, Y. et al. Gain-Constrained Extended Kalman Filtering with Stochastic Nonlinearities and Randomly Occurring Measurement Delays. Circuits Syst Signal Process 35, 3957–3980 (2016). https://doi.org/10.1007/s00034-016-0244-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0244-4

Keywords

Navigation