Skip to main content
Log in

Fast Convergence on Blind and Semi-Blind Channel Estimation for MIMO–OFDM Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, blind and semi-blind subspace channel estimations with fast convergence rate are proposed for multiple-input multiple-output orthogonal frequency division multiplexing (OFDM) systems in the presence of virtual carriers. The subspace method has a main drawback of slow convergence rate when deriving the noise subspaces from the second-order statistics of received signals. This phenomenon is especially evident when the size of received signals is large. Inspired by this fact, we present a block matrix scheme (BMS) to generate a group of sub-vectors from each OFDM symbol when virtual carriers are used. The number of equivalent signals is increased and therefore, the convergence rate of channel estimation is enhanced. The semi-blind method is also investigated by incorporating subspace technology with least square scheme. The identifiability of the BMS-based channel estimation is analyzed to derive the applicable range of the BMS size. The computational complexity of the proposed channel estimation is calculated at the end. Computer simulations show that the proposed blind and semi-blind methods converge very well in channel estimation and equalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Ali, A. Doucet, Y. Hua, Blind SOS subspace channel estimation and equalization techniques exploiting spatial diversity in OFDM systems. Digit. Signal Process. 14(2), 171–202 (2004)

    Article  Google Scholar 

  2. F. Boccardi, B. Clerckx, A. Ghosh, E. Hardouin, G. Jongren, K. Kusume, E. Onggosanusi, Y. Tang, Multiple antenna techniques in LTE-advanced. IEEE Commun. Mag. 50(3), 114–121 (2012)

    Article  Google Scholar 

  3. H. Bolcskei, R.W. Heath Jr, A.J. Paulraj, Blind channel identification and equalization in OFDM-based multiantenna systems. IEEE Trans. Signal Process. 50(1), 96–109 (2002)

    Article  Google Scholar 

  4. Y.S. Chen, J.H. Song, Semiblind channel estimation for MIMO-OFDM systems. EURASIP J. Adv. Signal Process. 2012(212), 1–10 (2012)

    MATH  Google Scholar 

  5. T. Cui, C. Tellambura, Joint frequency offset and channel estimation for OFDM systems using pilot symbols and virtual carriers. IEEE Trans. Wirel. Commun. 6(4), 1193–1202 (2007)

    Article  Google Scholar 

  6. ETSI Normalization Committee, Digital Broadcasting Systems for Television, Sound and Data Services: Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television. Norme ETSI, Sophia-Antipolis, France. Doc. pr ETS 300, 744 (1996)

  7. ETSI Normalization Committee, Radio Broadcasting Systems, Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers. Norme ETSI, Sophia-Antipolis, France, Doc. ETS 300 401, 1995–1997

  8. T. Fan, Y. Wen, S. Huang, X. Ma, An improved DFT-based channel estimation algorithm for OFDM system in non-sample-spaced multipath channels. Circuits Syst. Signal Process. 33(4), 1277–1288 (2014)

    Article  Google Scholar 

  9. W. Feng, W.P. Zhu, M.N.S. Swamy, A semiblind channel estimation approach for MIMO OFDM systems. IEEE Trans. Signal Process. 56(7), 2821–2834 (2008)

    Article  MathSciNet  Google Scholar 

  10. W.C. Freitas Jr, A.L.F. de Almeida, J.C.L. da Costa, Blind joint channel estimation and data detection for precoded multi-layered space-frequency MIMO schemes. Circuits Syst. Signal Process. 33(4), 1215–1229 (2014)

    Article  Google Scholar 

  11. F. Gao, Y. Zeng, A. Nallanathan, T.S. Ng, Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems: algorithm, identifiability and performance analysis. IEEE J. Sel. Areas Commun. 26, 378–388 (2008)

    Article  Google Scholar 

  12. Y. Guan, T. Xu, R. Leuken, M. Qian, Parallel channel estimator and equalizer for mobile OFDM systems. Circuits Syst. Signal Process. 33(3), 839–861 (2014)

    Article  Google Scholar 

  13. X. He, R. Song, W. Zhu, Optimal pilot pattern design for compressed sensing-based sparse channel estimation in OFDM systems. Circuits Syst. Signal Process. 31(4), 1379–1395 (2012)

    Article  MathSciNet  Google Scholar 

  14. W.C. Huang, C.H. Pan, C.P. Li, H.J. Li, Subspace-based semi-blind channel estimation in uplink OFDMA systems. IEEE Trans. Broadcast. 56(1), 58–65 (2010)

    Article  Google Scholar 

  15. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std 802.16 (2004)

  16. H.G. Jeon, E. Serpedin, A novel simplified channel tracking method for MIMO-OFDM systems with null sub-carriers. Signal Process. 88(4), 1002–1016 (2008)

    Article  MATH  Google Scholar 

  17. M. Jiang, L. Hanzo, Multi-user MIMO-OFDM for next generation wireless systems. Proc. IEEE 95(7), 1430–1469 (2007)

    Article  Google Scholar 

  18. C. Li, S. Roy, Subspace-based blind channel estimation for OFDM by exploiting virtual carriers. IEEE Trans. Wirel. Commun. 2, 141–150 (2003)

    Article  Google Scholar 

  19. P. Loubaton, E. Moulines, On blind multiuser forward link channel estimation by the subspace method: identifiability results. IEEE Trans. Signal Process. 48(8), 2366–2376 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Morelli, C.-C.J. Kuo, M.-O. Pun, Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proc. IEEE 95(7), 1394–1427 (2007)

    Article  Google Scholar 

  21. P. Salvo Rossi, R.R. Müller, O. Edfors, Linear MMSE estimation of time-frequency variant channels for MIMO-OFDM systems. Signal Process. 91(5), 1157–1167 (2011)

    Article  MATH  Google Scholar 

  22. C. Shin, R.W. Heath Jr, E.J. Powers, Blind channel estimation for MIMO-OFDM systems. IEEE Trans. Veh. Technol. 56(2), 670–685 (2007)

    Article  Google Scholar 

  23. N.D. Sidiropoulos, R. Bro, G.B. Giannakis, Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process. 48(8), 2377–2388 (2000)

    Article  Google Scholar 

  24. M.S. Sohail, T.Y. Al-Naffouri, An EM based frequency domain channel estimation algorithm for multi-access OFDM systems. Signal Process. 90(5), 1562–1572 (2010)

    Article  MATH  Google Scholar 

  25. R. Vershynin, How close is the sample covariance matrix to the actual covariance matrix? J. Theor. Probab. 25(3), 655–686 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Wan, W.-P. Zhu, M.N.S. Swamy, Semiblind sparse channel estimation for MIMO-OFDM systems. IEEE Trans. Veh. Technol. 60(6), 2569–2582 (2011)

    Article  Google Scholar 

  27. G. Xu, R.H. Roy, T. Kailath, Detection of number of sources via exploitation of centro-symmetry property. IEEE Trans. Signal Process. 42(1), 102–112 (1994)

    Article  Google Scholar 

  28. J.L. Yu, Channel estimation for SIMO OFDM systems without cyclic prefix. Electron. Lett. 43(24), 1369–1371 (2007)

    Article  Google Scholar 

  29. J.L. Yu, D.Y. Hong, A novel subspace channel estimation with fast convergence for ZP-OFDM systems. IEEE Trans. Wirel. Commun. 10(10), 3168–3173 (2011)

    Article  Google Scholar 

  30. J.L. Yu, W.R. Kuo, Fast semi-blind channel estimation for MIMO-OFDM systems with virtual carriers, in Proceedings of the first IEEE International Conference on Communications in China (ICCC2012) (Beijing, China, 15–18 August, 2012)

  31. T. Zhou, M. Peng, W. Wang, H. Chen, Low-complexity coordinated beamforming for Downlink multi-cell SDMA/OFDM system. IEEE Trans. Veh. Technol. 62(1), 247–255 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Taiwan (ROC) under Grant No. NSC99-2221-E-030-006-MY2 and No. NSC101-2221-E-030-011-MY2; the Fundamental Research Funds for the Central Universities under Grant No. 2013RC1001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Lang Yu.

Appendix

Appendix

Based on Theorem 2 and the Vandermonde matrix property [23], both H \(_{G}\) and \({\bar{\mathbf {W}}}_0 \) are full column rank matrices if \(G \geqq D-L\). Then, \({\mathbf {H}}_G {\bar{\mathbf {W}}}_0 \) has full column rank. Now we define some notations as follows:

$$\begin{aligned}&{\mathbf {B}}_1 ={\mathbf {H}}_G (1:(G+L-D)M_r ,1:(G+L-D)M_t ) \nonumber \\&{\mathbf {B}}_2 ={\mathbf {H}}_G (1:(G+L-D)M_r ,(G+L-D)M_t +1:(G+L)M_t ) \nonumber \\&{\mathbf {B}}_3 ={\mathbf {H}}_G ((G+L-D)M_r +1:(G+L-D)M_r , \nonumber \\&\quad 1:GM_t ,(G+L-D)M_t +1:(G+L)M_t ) \nonumber \\&{\bar{\mathbf {W}}}_1 ={\bar{\mathbf {W}}}_0 (1:(G+L-D)M_t ,1:DM_t ) \nonumber \\&{\bar{\mathbf {W}}}_2 ={\bar{\mathbf {W}}}_0 ((G+L-D)M_t +1:(G+L)M_t ,1:DM_t ) . \end{aligned}$$
(46)

Note that \(\mathbf{B}_{3}\) is a generalized Sylvester matrix like \(\mathbf{H}_{G}\). From Theorem 1 in [19], the sub-matrix \(\mathbf{B}_{3}\) has a full column rank if the condition \(L\le (D-1)/(M_{T}+1)\) is fulfilled. From (46), \({\mathbf {H}}_G {\bar{\mathbf {W}}}_0 \) becomes

$$\begin{aligned} {\mathbf {H}}_G {\bar{\mathbf {W}}}_0 =\left( {{\begin{array}{l} {{\mathbf {B}}_1 {\bar{\mathbf {W}}}_1 +{\mathbf {B}}_2 {\bar{\mathbf {W}}}_2 } \\ {{\mathbf {B}}_3 {\bar{\mathbf {W}}}_2 } \\ \end{array} }}\right) . \end{aligned}$$
(47)

From (22), the eigenvalue-eigenvector pairs can be expressed by

$$\begin{aligned} {\mathbf {U}}=[{\mathbf {U}}_s \quad {\mathbf {U}}_n ]=\left( {{\begin{array}{lll} {{\mathbf {U}}_{s1} } &{} {{\mathbf {U}}_{n11} } &{} {{\mathbf {U}}_{n12} } \\ {{\mathbf {U}}_{s2} } &{} {{\mathbf {U}}_{n21} } &{} {{\mathbf {U}}_{n22} } \\ \end{array} }}\right) \!. \end{aligned}$$
(48)
$$\begin{aligned} \mathrm{{diag}}(\lambda _1 \ldots \lambda _{GM_r } )=\left( {{\begin{array}{ccc} {{\mathbf {\Lambda }}_s } &{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\sigma _n^2 {\mathbf {I}}_{(D-L)M_r -DM_t } } &{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\sigma _n^2 {\mathbf {I}}_{(G+L-D)M_r } } \\ \end{array} }}\right) \!. \end{aligned}$$
(49)

where \(\mathbf{U}_{s1}\) and \(\mathbf{U}_{s2}\) have ( \(G+L-D\)) \(M_{r}\) and (\( D-L\)) \(M_{r}\) rows, respectively. From (21) and (22), we have \(\sigma _s {\mathbf {H}}_G {\bar{\mathbf {W}}}_0 ={\mathbf {U}}_s ({\mathbf {\Lambda }}_s -\sigma _n^2 {\mathbf {I}}_{DM_t } )^{1/2}{\mathbf {V}}^H.\) where V is an unitary matrix. Using (47)–(49), we obtain

$$\begin{aligned} \sigma _s {\mathbf {B}}_3 {\bar{\mathbf {W}}}_2 ={\mathbf {U}}_{s2} ({\mathbf {\Lambda }}_s -\sigma _n^2 {\mathbf {I}}_{DM_t } )^{1/2}{\mathbf {V}}^H. \end{aligned}$$
(50)

Since \({\bar{\mathbf {W}}}_2 \) is a \( DM_{t} \times DM_{t}\) sub-matrix from \({\bar{\mathbf {W}}}_0 \), it is nonsingular and Range\(({\mathbf {B}}_3 )=\mathrm{{Range}}({\mathbf {U}}_{s2} )\), which means that \({\mathbf {U}}_{s2} \) also has a full column rank. Let \({\mathbf {U}}_{s2}^\bot \in C^{(D-L)M_r \times [(D-L)M_r -DM_t ]}\) be the orthogonal complement of \({\mathbf {U}}_{s2} \). Then the noise subspace can be written as

$$\begin{aligned} {\mathbf {U}}_n =\left( {{\begin{array}{*{20}c} 0 &{} {{\tilde{\mathbf {U}}}_{n12} } \\ {{\mathbf {U}}_{s2}^\bot } &{} {{\tilde{\mathbf {U}}}_{n22} }\\ \end{array} }}\right) {\mathbf {\Pi }}. \end{aligned}$$
(51)

where \({\tilde{\mathbf {U}}}_{n12} \) and \({\tilde{\mathbf {U}}}_{n22} \) have the same dimensions as those of \({\mathbf {U}}_{n12} \) and \({\mathbf {U}}_{n22} \), and \({\mathbf {\Pi }}\) is a nonsingular matrix. If range\(({\mathbf {H}}_G {\bar{\mathbf {W}}}_0 )= \mathrm{{range}}({\mathbf {{H}'}}_G {\bar{\mathbf {W}}}_0 )\), then \({\mathbf {U}}_n \) is also orthogonal to \({\mathbf {{H}'}}_G {\bar{\mathbf {W}}}_0 \). Let \({\mathbf {{B}'}}_3 \) be the sub-matrix of \({\mathbf {{H}'}}_G \) as with \({\mathbf {B}}_3 \) in \({\mathbf {H}}_G \). Then we get

$$\begin{aligned} \quad {\mathbf {U}}_{s2}^\bot {\mathbf {{B}'}}_3 {\bar{\mathbf {W}}}_2 ={\mathbf {0}} \nonumber \\ \text{ or } {\mathbf {U}}_{s2}^\bot {\mathbf {{B}'}}_3 ={\mathbf {0}} . \end{aligned}$$
(52)

From (48), we know that Range\(({\mathbf {B}}_3 )=\mathrm{{Range}}({\mathbf {{B}'}}_3 )\). By assuming that \({\mathbf {{h}'}}\) is of full column rank and using Theorem 2 in [19], we conclude that \({\mathbf {{h}'}}={\mathbf {h\Omega }}\) where \({\varvec{\Omega }}\) is a \(M_{t}\times M_{t}\) nonsingular matrix.

In addition, if \({\mathbf {{h}'}}={\mathbf {h\Omega }}\), then \({\mathbf {{H}'}}_G {\bar{\mathbf {W}}}_0 \) can be written as

$$\begin{aligned}&{\mathbf {{H}'}}_G {\bar{\mathbf {W}}}_0 ={\mathbf {H}}_G ({\mathbf {I}}_{(G+L)} \otimes {\varvec{\Omega }})({\mathbf {W}}_0 \otimes {\mathbf {I}}_{M_t } ) \nonumber \\&={\mathbf {H}}_G ({\mathbf {W}}_0 \otimes {\mathbf {I}}_{M_t } )({\mathbf {I}}_D \otimes {\varvec{\Omega }}) \nonumber \\&={\mathbf {H}}_G {\bar{\mathbf {W}}}_0 ({\mathbf {I}}_D \otimes {\varvec{\Omega }}) . \end{aligned}$$
(53)

Since \(({\mathbf {I}}_D \otimes {\varvec{\Omega }})\) is nonsingular, we conclude that range\(({\mathbf {H}}_G {\bar{\mathbf {W}}}_0 )= \mathrm{{range}}({\mathbf {{H}'}}_G {\bar{\mathbf {W}}}_0 )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yu, JL. & Kuo, WR. Fast Convergence on Blind and Semi-Blind Channel Estimation for MIMO–OFDM Systems. Circuits Syst Signal Process 34, 1993–2013 (2015). https://doi.org/10.1007/s00034-014-9947-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9947-6

Keywords

Navigation