Skip to main content
Log in

Improved Active Calibration Algorithms in the Presence of Channel Gain/Phase Uncertainties and Sensor Mutual Coupling Effects

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper deals with the problem of active calibration when channel gain/phase uncertainties and sensor mutual coupling effects are simultaneously present. The numerical algorithms used to compensate for array error matrix, which is formed by the product of mutual coupling matrix and channel gain/phase error matrix, are presented especially tailored to uniform linear array (ULA) and uniform circular array (UCA). First, the array spatial responses corresponding to different azimuths are numerically evaluated using a set of time-disjoint auxiliary sources at known locations. Subsequently, a least-squares (LS) minimization model with respect to array error matrix is established. To solve this LS problem, two novel algorithms, namely algorithm I and algorithm II, are developed. In algorithm I, the array error matrix is considered as a whole matrix parameter to be optimized and an explicit closed-form solution to the error matrix is obtained. Compared with some existing algorithms with similar computation framework, algorithm I is able to utilize all potentially linear characteristics of ULA’s and UCA’s error matrix, and the calibration accuracy can be increased. Unlike algorithm I, algorithm II decomposes the array error matrix into two matrix parameters (i.e., mutual coupling matrix and channel gain/phase error matrix) to be optimized and all (nonlinear) numerical properties of the error matrix can be exploited. Therefore, algorithm II is able to achieve better calibration precision than algorithm I. However, algorithm II is more computationally demanding as a closed-form solution is no longer available and iteration computation is involved. In addition, the compact Cramér–Rao bound (CRB) expressions for all array error parameters are deduced in the case where auxiliary sources are assumed to be complex circular Gaussian distributed. Finally, the two novel algorithms are appropriately extended to the scenario where non-circular auxiliary sources are used, and the estimation variances of the array error parameters can be further decreased if the non-circularity is properly employed. Simulation experiments show the superiority of the presented algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H. Abeida, J.P. Delmas, MUSIC-like estimation of direction of arrival for noncircular sources. IEEE Trans. Signal Process. 54, 2678–2690 (2006)

    Article  Google Scholar 

  2. A.J. Boonstra, A.J. Van der Veen, Gain calibration methods for radio telescope arrays. IEEE Trans. Signal Process. 51, 25–38 (2003)

    Article  Google Scholar 

  3. P. Chargé, Y.D. Wang, J. Saillard, A direction finding method under sensor gain and phase uncertainties, in Proceeding of IEEE International Conference on Acoustics, Speech and Signal Process, Istanbul, pp. 3045–3048 (2005)

  4. Q. Cheng, Y.B. Hua, P. Stoica, Asymptotic performance of optimal gain-and-phase estimators of sensor arrays. IEEE Trans. Signal Process. 48, 3587–3590 (2000)

    Article  MATH  Google Scholar 

  5. C.Y. Cheng, Y.H. Lv, Mutual coupling calibration algorithm of array antennas and its error estimation, in Proceeding of IEEE International Conference on Signal Process, Beijing, pp. 487–490 (2004)

  6. A. Ferréol, P. Larzabal, M. Viberg, On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC. IEEE Trans. Signal Process. 54, 907–920 (2006)

    Article  Google Scholar 

  7. A. Ferréol, P. Larzabal, M. Viberg, On the resolution probability of MUSIC in presence of modeling errors. IEEE Trans. Signal Process. 56, 1945–1953 (2008)

    Article  MathSciNet  Google Scholar 

  8. A. Ferréol, P. Larzabal, M. Viberg, Statistical analysis of the MUSIC algorithm in the presence of modeling errors, taking into account the resolution probability. IEEE Trans. Signal Process. 58, 4156–4166 (2010)

    Article  MathSciNet  Google Scholar 

  9. B. Friedlander, A.J. Weiss, Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 39, 273–284 (1991)

    Article  Google Scholar 

  10. H.T. Gao, X.Y. Li, X. Zheng, Estimating the mutual coupling coefficient of arrays. J. Commun. Chin. 26, 19–23 (2005)

    Google Scholar 

  11. H.T. Guo, X. Zheng, Y.X. Li, Estimation of mutual coupling coefficient of the array by simulated annealing algorithm. Wuhan Univ. J. Nat. Sci. 10, 1000–1004 (2005)

    Article  Google Scholar 

  12. X.Q. Hu, H. Chen, Y.L. Wang, J.W. Chen, A self-calibration algorithm for cross array in the presence of mutual coupling. Sci. China 54, 836–848 (2011)

    MATH  Google Scholar 

  13. A.G. Jaffer, Constrained mutual coupling estimation for array calibration, in Proceeding of IEEE International Conference on Signal, Systems and Computers, Pacific Grove, CA, pp. 1273–1277 (2001)

  14. J.L. Liang, X.J. Zeng, W.Y. Wang, H.Y. Chen, L-shaped array-based elevation and azimuth direction finding in the presence of mutual coupling. Signal Process. 91, 1319–1328 (2011)

    Article  MATH  Google Scholar 

  15. M. Lin, L. Yang, Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling. IEEE Antennas Wirel. Propag. Lett. 5, 315–318 (2006)

    Article  Google Scholar 

  16. C. Liu, Z.F. Ye, Y.F. Zhang, Autocalibration algorithm for mutual coupling of planar array. Signal Process. 90, 784–794 (2010)

    Article  MATH  Google Scholar 

  17. A.F. Liu, G.S. Liao, C. Zeng, Z.W. Yang, Q. Xu, An eigenstructure method for estimating DOA and sensor gain-phase errors. IEEE Trans. Signal Process. 59, 5944–5956 (2011)

    Article  MathSciNet  Google Scholar 

  18. B.C. Ng, C.M.S. See, Sensor array calibration using a maximum-likelihood approach. IEEE Trans. Antennas Propag. 44, 827–835 (1996)

    Article  Google Scholar 

  19. C. Qi, Y. Wang, Y. Zhang, H. Chen, DOA estimation and self-calibration algorithm for uniform circular array. Electron. Lett. 41, 1092–1094 (2005)

    Article  Google Scholar 

  20. C.M.S. See, A.B. Gershman, Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays. IEEE Trans. Signal Process. 52, 329–338 (2004)

    Article  MathSciNet  Google Scholar 

  21. C.M.S. See, Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases. Electron. Lett. 30, 373–374 (1994)

    Article  Google Scholar 

  22. C.M.S. See, B.K. Poth, Parametric sensor array calibration using measured steering vectors of uncertain locations. IEEE Trans. Signal Process. 47, 1133–1137 (1999)

    Article  Google Scholar 

  23. F. Sellone, A. Serra, A novel online mutual coupling compensation algorithm for uniform and linear arrays. IEEE Trans. Signal Process. 55, 560–573 (2007)

    Article  MathSciNet  Google Scholar 

  24. V.C. Soon, L. Tong, Y.F. Huang, R. Liu, A subspace method for estimating sensor gains and phases. IEEE Trans. Signal Process. 42, 973–976 (1994)

    Article  Google Scholar 

  25. P. Stoica, M. Viberg, B. Ottersten, Instrumental variable approach to array processing in spatially correlated noise fields. IEEE Trans. Signal Process. 42, 121–133 (1994)

    Article  Google Scholar 

  26. M. Viberg, B. Ottersten, T. Kailath, Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Process. 39, 2436–2449 (1991)

    Article  Google Scholar 

  27. M. Viberg, A.L. Swindlehurst, A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Trans. Signal Process. 42, 3495–3507 (1994)

    Article  Google Scholar 

  28. B. Wang, Y. Wang, Y. Guo, Mutual coupling calibration with instrumental sensors. Electron. Lett. 40, 373–374 (2004)

    Google Scholar 

  29. B.H. Wang, X.B. Chu, Mutual coupling calibration for uniform linear array with carry-on instrumental sensors, in Proceeding of IEEE International Conference on Communications, Circuits and Systems, Chengdu, pp. 818–821 (2004)

  30. L. Wang, X.C. Dai, Joint estimation of array calibration parameters, in Proceeding of IEEE International Conference on Communications, Circuits and Systems, Hong Kong, pp. 467–471 (2005)

  31. D. Wang, Y. Wu, Array errors active calibration algorithm and its improvement. Sci. China Ser. F 53, 1016–1033 (2010)

    Article  Google Scholar 

  32. D. Wang, Sensor array calibration in presence of mutual coupling and gain/phase errors by combining the spatial-domain and time-domain waveform information of the calibration sources. Circuits Syst. Signal Process. 32, 1257–1292 (2013)

    Article  Google Scholar 

  33. S.J. Wijnholds, A.J. Boonstra, A multisource calibration method for phased array radio telescopes, in Proceedings of the 4th IEEE Workshop on Sensor Array and Multi-Channel Process, Waltham, MA, pp. 12–14 (2006)

  34. S.J. Wijnholds, A.J. Veen, Multisource self-calibration for sensor arrays. IEEE Trans. Signal Process. 57, 3512–3522 (2009)

    Article  MathSciNet  Google Scholar 

  35. L. Xiang, Z. Ye, X. Xu, C. Chang, W. Xu, Y.S. Huang, Direction of arrival estimation for uniform circular array based on fourth-order cumulants in the presence of unknown mutual coupling. IET Microw. Antennas Propag. 2, 281–287 (2008)

    Article  Google Scholar 

  36. Z.F. Ye, C. Liu, 2-D DOA estimation in the presence of mutual coupling. IEEE Trans. Antennas Propag. 56, 3150–3158 (2008)

    Article  MathSciNet  Google Scholar 

  37. Z.F. Ye, J.S. Dai, X. Xu, X.P. Wu, DOA estimation for uniform linear array with mutual coupling. IEEE Trans. Aerosp. Electron. Syst. 45, 280–288 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank all the anonymous reviewers for their valuable comments and suggestions which vastly improved the content and presentation of this paper. The author also acknowledges support from National Science Foundation of China under Grants 61201381 and the Future Development Foundation of Zhengzhou Information Science and Technology College under Grants YP12JJ202057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Appendices

Appendix 1: Proof of (14)–(16)

Consider the \(n\)th sub-block in \({\varvec{m}}_{\hbox {ULA}} \) and \(\bar{\varvec{m}}_{\hbox {ULA}} \) as follows:

$$\begin{aligned} \left\{ {\begin{array}{l} {\varvec{m}}_{\hbox {ULA}, n} =\left[ {{\begin{array}{lllllll} {c_n \tau _n } &{} {c_{n-1} \tau _n } &{} \cdots &{} {c_1 \tau _n } &{} {c_2 \tau _n } &{} \cdots &{} {c_{M-n+1} \tau _n } \\ \end{array} }} \right] ^\mathrm{T} \\ \bar{\varvec{m}}_{\hbox {ULA}, n} =\left[ {{\begin{array}{llll} {c_{1} \tau _n } &{} {c_{2} \tau _n } &{} \cdots &{} {c_{\max \left\{ {n\,,\,M-n+1} \right\} } \tau _n } \\ \end{array} }} \right] ^\mathrm{T} \\ \end{array}} \right. \end{aligned}$$
(86)

When \(n\le \left\lfloor {M/2} \right\rfloor \), it follows that \(\hbox {max}\left\{ {n\,,\,M-n+1} \right\} =M-n+1\) and \(\bar{\varvec{m}}_{\hbox {ULA,} n} =\left[ {{\begin{array}{llll} {c_{1} \tau _n } &{} {c_{2} \tau _n } &{} \cdots &{} {c_{M-n+1} \tau _n } \\ \end{array} }} \right] ^\mathrm{T}\). Then, it can be verified that

(87)

Likewise, when \(n>\left\lfloor {M / 2} \right\rfloor \), it can be seen that \(\hbox {max}\left\{ {n\,,\,M-n+1} \right\} =n\) and \(\bar{\varvec{m}}_{\hbox {ULA}, n} =\left[ {{\begin{array}{llll} {c_{1} \tau _n } &{} {c_{2} \tau _n } &{} \cdots &{} {c_n \tau _n } \\ \end{array} }} \right] ^\mathrm{T}\), which produces

(88)

Combining (87) and (88) leads to

$$\begin{aligned} {\varvec{m}}_{\hbox {ULA}, n} ={\varvec{H}}_{\hbox {ULA}, n} \bar{\varvec{m}}_{\hbox {ULA}, n} \quad ( {{1}\le n\le M}) \end{aligned}$$
(89)

which further implies \({\varvec{m}}_{\hbox {ULA}} ={\varvec{H}}_{\hbox {ULA}} \bar{\varvec{m}}_{\hbox {ULA}} \), where \({\varvec{H}}_{\hbox {ULA}} =\hbox {blkdiag}\left[ {{\begin{array}{llll} {{\varvec{H}}_{\hbox {ULA},{1}} } &{} {{\varvec{H}}_{\hbox {ULA},{2}} } &{} \cdots &{} {{\varvec{H}}_{\hbox {ULA}, M} } \\ \end{array} }} \right] \). Therefore, Eqs. (14)–(16) are proved.

Appendix 2: Proof of (18)–(20)

First, consider the first sub-block in \({\varvec{m}}_{\hbox {UCA}} \) and \(\bar{\varvec{m}}_{\hbox {UCA}} \). When \(M\) is odd, it can be seen that

$$\begin{aligned} \left\{ {\begin{array}{l} {\varvec{m}}_{\hbox {UCA},{1}} =\left[ {{\begin{array}{llllllll} {c_1 \tau _1 } &{} {c_{2} \tau _1 } &{} \cdots &{} {c_L \tau _1 } &{} {c_L \tau _1 } &{} \cdots &{} {c_{3} \tau _1 } &{} {c_{2} \tau _1 } \\ \end{array} }} \right] ^\mathrm{T} \\ \bar{\varvec{m}}_{\hbox {UCA},{1}} =\left[ {{\begin{array}{llll} {c_{1} \tau _1 } &{} {c_{2} \tau _1 } &{} \cdots &{} {c_L \tau _1 } \\ \end{array} }} \right] ^\mathrm{T} \\ \end{array}} \right. \end{aligned}$$
(90)

which leads to

(91)

Similarly, when \(M\) is even, it can be observed that

$$\begin{aligned} \left\{ {\begin{array}{l} {\varvec{m}}_{\hbox {UCA},{1}} =\left[ {{\begin{array}{lllllllll} {c_1 \tau _1 } &{} {c_{2} \tau _1 } &{} \cdots &{} {c_{L-1} \tau _1 } &{} {c_L \tau _1 } &{} {c_{L-1} \tau _1 } &{} \cdots &{} {c_{3} \tau _1 } &{} {c_{2} \tau _1 } \\ \end{array} }} \right] ^\mathrm{T} \\ \bar{\varvec{m}}_{\hbox {UCA},{1}} =\left[ {{\begin{array}{llll} {c_{1} \tau _1 } &{} {c_{2} \tau _1 } &{} \cdots &{} {c_L \tau _1 } \\ \end{array} }} \right] ^\mathrm{T} \\ \end{array}} \right. \end{aligned}$$
(92)

which yields

(93)

Combining (91) and (93), it follows that \({\varvec{m}}_{\hbox {UCA},{1}} ={\varvec{\Delta }}_{1} \bar{\varvec{m}}_{\hbox {UCA},{1}} \). On the other hand, due to the circular Toeplitz structure of matrix \({{\varvec{C}}}\), it can be further found that the \(n\)th sub-block in \({\varvec{m}}_{\hbox {UCA}} \) and \(\bar{\varvec{m}}_{\hbox {UCA}} \) satisfy the following linear relationship

$$\begin{aligned} {\varvec{m}}_{\hbox {UCA}, n} ={\varvec{\Delta }} _2^{n-1} {\varvec{\Delta }}_1 \bar{\varvec{m}}_{\hbox {UCA}, n} \quad ( {{1}\le n\le M}) \end{aligned}$$
(94)

where

figure a

is the circular shift matrix. Consequently, equality \({\varvec{m}}_{\hbox {UCA}} ={\varvec{H}}_{\hbox {UCA}} \bar{\varvec{m}}_{\hbox {UCA}} \) holds, where \({\varvec{H}}_{\hbox {UCA}} =\hbox {blkdiag}\Big [ {{\varvec{\Delta }}_1 } {{\varvec{\Delta }}_2 {\varvec{\Delta }}_1 } \cdots {{\varvec{\Delta }}_2^{M-1} {\varvec{\Delta }}_1 } \Big ]\). Hence, Eqs. (18)–(20) are proved.

Appendix 3: Proof of (44)–(46)

First, applying the first-order derivation operator of the orthogonal projection matrix leads to

$$\begin{aligned} \frac{\partial {\varvec{\Pi }}^\bot ( {\varvec{\Omega }})}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }=-{\varvec{\Pi }}^\bot ( {\varvec{\Omega }})\frac{\partial {\varvec{\Omega }}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }{\varvec{\Omega }}^{\dag }-( {{\varvec{\Pi }}^\bot ( {\varvec{\Omega }})\frac{\partial {\varvec{\Omega }}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }{\varvec{\Omega }}^{\dag }})^\mathrm{H} \end{aligned}$$
(95)

which yields

$$\begin{aligned} \begin{array}{l} \frac{\partial g_{\hbox {cost}} }{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }={\varvec{\alpha }}^\mathrm{H}{\varvec{V}}^\mathrm{H}\frac{\partial {\varvec{\Pi }}^\bot ( {\varvec{\Omega }})}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }{\varvec{V\alpha }}=-2\cdot \mathrm{Re}\left\{ {{\varvec{\alpha }}^\mathrm{H}{\varvec{V}}^\mathrm{H}{\varvec{\Pi }}^\bot ( {\varvec{\Omega }})\frac{\partial {\varvec{\Omega }}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }{\varvec{\Omega }}^{\dag }{\varvec{V\alpha }}} \right\} \\ =-2\cdot \mathrm{Re}\left\{ {{\varvec{p}}^\mathrm{H}\frac{\partial {\varvec{\Omega }}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }{{\varvec{Q}}}} \right\} =-2\cdot \mathrm{Re}\left\{ {{\varvec{p}}^\mathrm{H}{\varvec{\Sigma }}( {{\varvec{I}}_M \otimes {\varvec{i}}_{\dim \left[ {{\varvec{c}}} \right] }^{( n)} }){{\varvec{Q}}}} \right\} \\ \end{array} \end{aligned}$$
(96)

where the third equality follows from (36). According to (96), it can be readily verified that

$$\begin{aligned} \frac{\partial g_{\hbox {cost}} }{\partial \hbox {Re}\left\{ {{\varvec{c}}} \right\} }=-2\cdot \mathrm{Re}\left\{ {( {{\varvec{I}}_{\dim \left[ {{\varvec{c}}} \right] } \otimes {\varvec{p}}})^\mathrm{H}{\varvec{G}}_1 ( {{\varvec{c}}}){{\varvec{Q}}}} \right\} =-2\cdot \mathrm{Re}\left\{ {{\varvec{g}}( {{\varvec{c}}})} \right\} \end{aligned}$$
(97)

Similarly, it follows that

$$\begin{aligned} \frac{\partial g_{\hbox {cost}} }{\partial \hbox {Im}\left\{ {{\varvec{c}}} \right\} }=-2\cdot \hbox {Re}\left\{ {\hbox {i}( {{\varvec{I}}_{\dim \left[ {{\varvec{c}}} \right] } \otimes {\varvec{p}}})^\mathrm{H}{\varvec{G}}_1 ( {{\varvec{c}}}){{\varvec{Q}}}} \right\} =2\cdot \mathrm{Im}\left\{ {{\varvec{g}}( {{\varvec{c}}})} \right\} \end{aligned}$$
(98)

On the other hand, it can be approximately obtained through some algebraic manipulations that

$$\begin{aligned} \begin{aligned}&\frac{\partial ^2g_{\hbox {cost}} }{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n \partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _m }\\&\quad \approx 2\cdot \mathrm{Re}\left\{ {{\varvec{\alpha }}^\mathrm{H}{\varvec{V}}^\mathrm{H}{\varvec{\Omega }}^{{\dag \mathrm{H}}}\frac{\partial {\varvec{\Omega }}^\mathrm{H}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }{\varvec{\Pi }}^\bot ( {\varvec{\Omega }})\frac{\partial {\varvec{\Omega }}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _m }{\varvec{\Omega }}^{\dag }{\varvec{V\alpha }}} \right\} \\&\quad =2\cdot \mathrm{Re}\left\{ {{{\varvec{Q}}}^\mathrm{H}\frac{\partial {\varvec{\Omega }}^\mathrm{H}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _n }{\varvec{\Pi }}^\bot ( {\varvec{\Omega }})\frac{\partial {\varvec{\Omega }}}{\partial \left[ {\hbox {Re}\left\{ {{\varvec{c}}} \right\} } \right] _m }{{\varvec{Q}}}} \right\} \\&\quad =2\cdot \mathrm{Re}\left\{ {{{\varvec{Q}}}^\mathrm{H}( {{\varvec{I}}_M \otimes {\varvec{i}}_{\dim \left[ {{\varvec{c}}} \right] }^{( n)\hbox {T}} }){\varvec{\Sigma }}^\mathrm{H}{\varvec{\Pi }}^\bot ( {\varvec{\Omega }}){\varvec{\Sigma }}( {{\varvec{I}}_M \otimes {\varvec{i}}_{\dim \left[ {{\varvec{c}}} \right] }^{( m)} }){{\varvec{Q}}}} \right\} \\ \end{aligned} \end{aligned}$$
(99)

where the third equality follows from (36). Then, it can be easily proved that

$$\begin{aligned} \frac{\partial ^2g_{\hbox {cost}} }{\partial \hbox {Re}\left\{ {{\varvec{c}}} \right\} \partial \hbox {Re}^\mathrm{T}\left\{ {{\varvec{c}}} \right\} }\approx 2\cdot \mathrm{Re}\left\{ {{\varvec{G}}_2 ( {{\varvec{c}}}){\varvec{\Pi }}^\bot ( {\varvec{\Omega }}){\varvec{G}}_2^\mathrm{H} ( {{\varvec{c}}})} \right\} =2\cdot \mathrm{Re}\left\{ {{\varvec{G}}( {{\varvec{c}}})} \right\} \end{aligned}$$
(100)

Through a similar mathematical manipulation, it can also be concluded that

$$\begin{aligned} \left\{ {\begin{array}{l} \frac{\partial ^2g_{\hbox {cost}} }{\partial \hbox {Re}\left\{ {{\varvec{c}}} \right\} \partial \mathrm{Im}^\mathrm{T}\left\{ {{\varvec{c}}} \right\} }\approx 2\cdot \mathrm{Re}\left\{ {\hbox {i}{\varvec{G}}_2 ( {{\varvec{c}}}){\varvec{\Pi }}^\bot ( {\varvec{\Omega }}){\varvec{G}}_2^\mathrm{H} ( {{\varvec{c}}})} \right\} =-2\cdot \mathrm{Im}\left\{ {{\varvec{G}}( {{\varvec{c}}})} \right\} \\ \frac{\partial ^2g_{\hbox {cost}} }{\partial \mathrm{Im}\left\{ {{\varvec{c}}} \right\} \partial \mathrm{Re}^\mathrm{T}\left\{ {{\varvec{c}}} \right\} }\approx 2\cdot \mathrm{Re}\left\{ {-\hbox {i}{\varvec{G}}_2 ( {{\varvec{c}}}){\varvec{\Pi }}^\bot ( {\varvec{\Omega }}){\varvec{G}}_2^\mathrm{H} ( {{\varvec{c}}})} \right\} =2\cdot \mathrm{Im}\left\{ {{\varvec{G}}( {{\varvec{c}}})} \right\} \\ \frac{\partial ^2g_{\hbox {cost}} }{\partial \mathrm{Im}\left\{ {{\varvec{c}}} \right\} \partial \mathrm{Im}^\mathrm{T}\left\{ {{\varvec{c}}} \right\} }\approx 2\cdot \mathrm{Re}\left\{ {{\varvec{G}}_2 ( {{\varvec{c}}}){\varvec{\Pi }}^\bot ( {\varvec{\Omega }}){\varvec{G}}_2^\mathrm{H} ( {{\varvec{c}}})} \right\} =2\cdot \mathrm{Re}\left\{ {{\varvec{G}}( {{\varvec{c}}})} \right\} \\ \end{array}} \right. \end{aligned}$$
(101)

Based on the above analysis, Eqs. (44)–(46) hold true.

Appendix 4: Proof of (59)–(62)

According to (57), it follows that

$$\begin{aligned} \begin{aligned}&\left[ {\mathbf{FISH}_{\mathrm{Re}\left\{ {\varvec{\tau }} \right\} \mathrm{Re}\left\{ {\varvec{\tau }} \right\} } } \right] _{nm}\\&\quad =\frac{{2}K}{\sigma ^2}\cdot \hbox {Re}\left\{ {\sum \limits _{k=1}^D {\omega _k {{\varvec{a}}}^\mathrm{H}( {\theta _k }){{\varvec{C}}}^\mathrm{H}{\varvec{i}}_M^{( n)} {\varvec{i}}_M^{(n){\mathrm{T}}} {{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}{\varvec{i}}_M^{( m)} {\varvec{i}}_M^{( m)\mathrm{T}} {{\varvec{Ca}}}( {\theta _k })} } \right\} \\&\quad =\frac{{2}K}{\sigma ^2}\cdot \hbox {Re}\left\{ {\sum \limits _{k=1}^D {\left[ {{{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}} \right] _{nm} \cdot \left[ {\omega _k {{\varvec{Ca}}}( {\theta _k }){{\varvec{a}}}^\mathrm{H}( {\theta _k }){{\varvec{C}}}^\mathrm{H}} \right] _{mn} } } \right\} \\ \end{aligned}\nonumber \\ \end{aligned}$$
(102)

which implies

$$\begin{aligned} \mathbf{FISH}_{\hbox {Re}\left\{ {\varvec{\tau }} \right\} \hbox {Re}\left\{ {\varvec{\tau }} \right\} }&=\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {( {{{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}})\bullet ( {\omega _k {{\varvec{Ca}}}( {\theta _k }){{\varvec{a}}}^\mathrm{H}( {\theta _k }){{\varvec{C}}}^\mathrm{H}})^\mathrm{T}} } \right\} \nonumber \\&=\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {{\varvec{X}}}_k }\right\} \end{aligned}$$
(103)

Through a similar mathematical manipulation, it can be proved that

$$\begin{aligned} \left\{ {\begin{array}{l} \mathbf{FISH}_{\mathrm{Re}\left\{ {\varvec{\tau }} \right\} \mathrm{Im}\left\{ {\varvec{\tau }} \right\} } =-\mathbf{FISH}_{\mathrm{Im}\left\{ {\varvec{\tau }} \right\} \mathrm{Re}\left\{ {\varvec{\tau }} \right\} } =-\frac{{2}K}{\sigma ^2}\cdot \mathrm{Im}\left\{ {\sum \limits _{k=1}^D {{\varvec{X}}}_k } \right\} \\ \mathbf{FISH}_{\mathrm{Im}\left\{ {\varvec{\tau }} \right\} \mathrm{Im}\left\{ {\varvec{\tau }} \right\} } =\mathbf{FISH}_{\mathrm{Re}\left\{ {\varvec{\tau }} \right\} \mathrm{Re}\left\{ {\varvec{\tau }} \right\} } =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {{\varvec{X}}}_k } \right\} \\ \end{array}} \right. \end{aligned}$$
(104)

Likewise, applying (57) again leads to

$$\begin{aligned} \begin{aligned}&\left[ {\mathbf{FISH}_{\mathrm{Re}\left\{ {\varvec{\tau }} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} } } \right] _{nm}\\&\quad =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {\omega _k {{\varvec{a}}}^\mathrm{H}( {\theta _k }){{\varvec{C}}}^\mathrm{H}{\varvec{i}}_M^{( n)} {\varvec{i}}_M^{( n)\mathrm{T}} {{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}{{\varvec{\Gamma }}}\cdot {\varvec{T}}\left[ {{{\varvec{a}}}( {\theta _k })} \right] \cdot {\varvec{i}}_N^{( m)} } } \right\} \\&\quad =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {\left[ {{{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}{{\varvec{\Gamma }}}\cdot {\varvec{T}}\left[ {{{\varvec{a}}}( {\theta _k })} \right] } \right] _{nm} \cdot \left[ {\omega _k {{\varvec{C}}}^*{{\varvec{a}}}^*( {\theta _k })} \right] _n } } \right\} \end{aligned} \nonumber \\ \end{aligned}$$
(105)

which yields

$$\begin{aligned} \begin{aligned}&\mathbf{FISH}_{\mathrm{Re}\left\{ {\varvec{\tau }} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} }\\&\quad =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {( {{{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}{{\varvec{\Gamma }}}\cdot {\varvec{T}}\left[ {{{\varvec{a}}}( {\theta _k })} \right] })\bullet ( {\omega _k ( {{{\varvec{Ca}}}( {\theta _k })})^\mathrm{H}\otimes {\varvec{1}}_{N\times 1} })^\mathrm{T}} } \right\} \\&\quad =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ \sum \limits _{k=1}^D {{{\varvec{Y}}_k } } \right\} \\ \end{aligned}\nonumber \\ \end{aligned}$$
(106)

With a similar derivation, it can be easily checked that

$$\begin{aligned} \left\{ {\begin{array}{l} \mathbf{FISH}_{\mathrm{Re}\left\{ {\varvec{\tau }} \right\} \mathrm{Im}\left\{ {{\varvec{c}}} \right\} }=-\mathbf{FISH}_{\mathrm{Im}\left\{ {\varvec{\tau }} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} } =-\frac{{2}K}{\sigma ^2}\cdot \mathrm{Im}\left\{ \sum \limits _{k=1}^D {{{\varvec{Y}}_k } } \right\} \\ \mathbf{FISH}_{\mathrm{Im}\left\{ {\varvec{\tau }} \right\} \mathrm{Im}\left\{ {{\varvec{c}}} \right\} } =\mathbf{FISH}_{\mathrm{Re}\left\{ {\varvec{\tau }} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} } =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ \sum \limits _{k=1}^D {{{\varvec{Y}}_k } } \right\} \\ \end{array}} \right. \end{aligned}$$
(107)

Analogously, it follows from (57) that

$$\begin{aligned}&\left[ {\mathbf{FISH}_{\mathrm{Re}\left\{ {{\varvec{c}}} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} } } \right] _{nm}\nonumber \\&\quad \!=\!\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {\omega _k {\varvec{i}}_M^{( n)\mathrm{T}} \!\cdot \! {\varvec{T}}^\mathrm{H}\left[ {{{\varvec{a}}}( {\theta _k })} \right] \cdot {{\varvec{\Gamma }}}^\mathrm{H}{{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}{{\varvec{\Gamma }}}\cdot {\varvec{T}}\left[ {{{\varvec{a}}}( {\theta _k })} \right] \cdot {\varvec{i}}_N^{( m)} } } \right\} \nonumber \\&\quad =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {\left[ {\omega _k \cdot {\varvec{T}}^\mathrm{H}\left[ {{{\varvec{a}}}( {\theta _k })} \right] \cdot {{\varvec{\Gamma }}}^\mathrm{H}{{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}{{\varvec{\Gamma }}}\cdot {\varvec{T}}\left[ {{{\varvec{a}}}( {\theta _k })} \right] } \right] _{nm} } } \right\} \nonumber \\ \end{aligned}$$
(108)

which gives

$$\begin{aligned}&\mathbf{FISH}_{\mathrm{Re}\left\{ {{\varvec{c}}} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} }\nonumber \\&\quad =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {\omega _k \cdot {\varvec{T}}^\mathrm{H}\left[ {{{\varvec{a}}}( {\theta _k })} \right] \cdot {{\varvec{\Gamma }}}^\mathrm{H}{{\varvec{W}}}^{-\mathrm{H}}{\varvec{\Pi }}^\bot ( {{\varvec{u}}_k }){{\varvec{W}}}^{-1}{{\varvec{\Gamma }}}\cdot {\varvec{T}}\left[ {{{\varvec{a}}}( {\theta _k })} \right] } } \right\} \nonumber \\&\quad =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {{{\varvec{Z}}}_k } } \right\} \end{aligned}$$
(109)

Through a similar derivation as above, it can be readily verified that

$$\begin{aligned} \left\{ {\begin{array}{l} \mathbf{FISH}_{\mathrm{Re}\left\{ {{\varvec{c}}} \right\} \mathrm{Im}\left\{ {{\varvec{c}}} \right\} } =-\mathbf{FISH}_{\mathrm{Im}\left\{ {{\varvec{c}}} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} } =-\frac{{2}K}{\sigma ^2}\cdot \mathrm{Im}\left\{ {\sum \limits _{k=1}^D {{{\varvec{Z}}}_k } } \right\} \\ \mathbf{FISH}_{\mathrm{Im}\left\{ {{\varvec{c}}} \right\} \mathrm{Im}\left\{ {{\varvec{c}}} \right\} } =\mathbf{FISH}_{\mathrm{Re}\left\{ {{\varvec{c}}} \right\} \mathrm{Re}\left\{ {{\varvec{c}}} \right\} } =\frac{{2}K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\sum \limits _{k=1}^D {{{\varvec{Z}}}_k } } \right\} \\ \end{array}} \right. \end{aligned}$$
(110)

At this point, the proof of (59)–(62) is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D. Improved Active Calibration Algorithms in the Presence of Channel Gain/Phase Uncertainties and Sensor Mutual Coupling Effects. Circuits Syst Signal Process 34, 1825–1868 (2015). https://doi.org/10.1007/s00034-014-9926-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9926-y

Keywords

Navigation