Skip to main content
Log in

Fractional double phase Robin problem involving variable order-exponents without Ambrosetti–Rabinowitz condition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider a fractional double phase Robin problem involving variable order and variable exponents. The nonlinearity f is a Carathéodory function satisfying some hypotheses which do not include the Ambrosetti–Rabinowitz-type condition. By using a variational methods, we investigate the multiplicity of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fuids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O.: On superlinear \(p(x)\)-Laplacian equations in \({\mathbb{R}}^N\). Nonlinear Anal. 73, 2566–2579 (2010)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, V., Rădulescu, V.: Fractional double-phase patterns: concentration and multiplicity of solutions. J. Math. Pures Appl. 142, 101–145 (2020)

    Article  MathSciNet  Google Scholar 

  4. Amster, P.: Multiple solutions for an elliptic system with indefinite Robin boundary conditions. Adv. Nonlinear Anal. 8(1), 603–614 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bahrouni, A.: Comparison and sub-supersolution principles for the fractional \(p(x)\)-Laplacian. J. Math. Anal. Appl. 458, 1363–1372 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal. 20(10), 1205–1216 (1993)

    Article  MathSciNet  Google Scholar 

  7. Bahrouni, S., Ounaies, H.: Strauss and Lions type theorems for the fractional Sobolev spaces with variable exponent and applications to nonlocal Kirchhoff-Choquard problem. Mediterr. J. Math. (2021). https://doi.org/10.1007/s00009-020-01661-w

    Article  MathSciNet  MATH  Google Scholar 

  8. Bahrouni, A., Rădulescu, V., Winkert, P.: Robin fractional problems with symmetric variable growth. J. Math. Phys. 61, 101503 (2020)

    Article  MathSciNet  Google Scholar 

  9. Bahrouni, A., Rădulescu, V., Repovš, D.: Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity 32(7), 2481–2495 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bahrouni, A., Rădulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. Ser. S 11(3), 379 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Bonanno, G., Molica Bisci, G., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. 75(12), 4441–4456 (2012)

    Article  MathSciNet  Google Scholar 

  12. Biswas, R., Tiwari, S.: Variable order nonlocal Choquard problem with variable exponents. Complex Var. Elliptic Equ. (2020). https://doi.org/10.1080/17476933.2020.1751136

  13. Biswas, R., Tiwari, S.: On a class of Kirchhoff–Choquard equations involving variable-order fractional \(p(\cdot )\)- Laplacian and without Ambrosetti–Rabinowitz type condition. Topol. Methods Nonlinear Anal. (in press)

  14. Cherfils, L., Ilyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \(p\) &\(q\)-Laplacian. Commun. Pure Appl. Anal. 4, 922 (2005)

  15. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  16. Chen, C., Bao, J.: Existence, nonexistence, and multiplicity of solutions for the fractional \(p\) &\(q\)-Laplacian equation in \({R}^{N}\). Bound. Value Probl., 16(153) (2016)

  17. Chung, N.T., Toan, H.Q.: On a class of fractional Laplacian problems with variable exponents and indefinite weights. Collect. Math. 71, 223–237 (2020)

    Article  MathSciNet  Google Scholar 

  18. Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Heidelberg (2011)

    Book  Google Scholar 

  19. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \(\mathbb{R}^n\), Lecture Notes, Scuola Normale Superiore di Pisa, vol. 15, Pisa (2017)

  20. Fan, X., Zhao, D.: On the spaces \(L^{p (x)}(\Omega )\) and \(W^{m, p (x)}(\Omega )\). J. Math. Anal. Appl. 263(2), 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  21. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory: The Basis for Linear and Nonlinear Analysis. Springer, New York (2011)

    Book  Google Scholar 

  22. Figueiredo, G.M.: Existence of positive solutions for a class of \(p, q\) elliptic problems with critical growth on \(R^N\). J. Math. Anal. Appl. 378, 507–518 (2011)

    Article  MathSciNet  Google Scholar 

  23. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture notes in Biomath, vol. 28. Springer, Berlin (1979)

    Book  Google Scholar 

  24. Giacomoni, J., Tiwari, S., Warnault, G.: Quasilinear parabolic problem with \( p(x)\)-Laplacian: existence, uniqueness of weak solutions and stabilization. NoDEA Nonlinear Differ. Equ. Appl. 23(3), 24 (2016)

    Article  MathSciNet  Google Scholar 

  25. Ho, K., Kim, Y.H.: A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional \(p (\cdot )\)-Laplacian. Nonlinear Anal. 188, 179–201 (2019)

    Article  MathSciNet  Google Scholar 

  26. Ho, K., Kim, Y.H.: The concentration-compactness principles for \(W^{s, p(\cdot ,\cdot )}({\mathbb{R}}^N)\) and application. Adv. Nonlinear Anal. 10(1), 816–848

  27. Hurtado, E.J., Miyagaki, O.H., Rodrigues, R.S.: Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti–Rabinowitz type conditions. J. Dynam. Differ. Equ. 30, 405–432 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kaufmann, U., Rossi, J.D., Vidal, R.E.: Fractional Sobolev spaces with variable exponents and fractional \(p(x)\)-Laplacians. Electron. J. Qual. Theory Differ. Equ. 76, 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kourogenis, N.C., Papageorgiou, N.S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. Kodai Math. J. 23, 108–135 (2000)

    Article  MathSciNet  Google Scholar 

  30. Kikuchi, K., Negoro, A.: On Markov processes generated by pseudodifferentail operator of variable order. Osaka J. Math. 34, 319–335 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Leopold, H.G.: Embedding of function spaces of variable order of differentiation. Czechoslovak Math. J. 49, 633–644 (1999)

    Article  MathSciNet  Google Scholar 

  32. Liu, Z., Wang, Z.-Q.: On Clark’s theorem and its applications to partially sublinear problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 1015–1037 (2015)

  33. Lorenzo, C.F., Hartley, T.T.: Initialized fractional calculus. Int. J. Appl. Math. 3, 249–265 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  Google Scholar 

  35. Marano, S., Mosconi, S.: Some recent results on the Dirichlet problem for \((p, q)\)- Laplacian equation. Discrete Contin. Dyn. Syst. Ser. S 11, 279–291 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Molica Bisci, G., Rădulescu, V.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial. Differ. Equ. 54(3), 2985–3008 (2015)

    Article  Google Scholar 

  37. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge (2016)

  38. Mingione, G., Rădulescu, V.: Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. (2021). https://doi.org/10.1016/j.jmaa.2021.125197

    Article  MathSciNet  MATH  Google Scholar 

  39. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Existence and multiplicity of solutions for double-phase Robin problems. Bull. Lond. Math. Soc. (2020). https://doi.org/10.1112/blms.12347

    Article  MathSciNet  MATH  Google Scholar 

  40. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

    Book  Google Scholar 

  41. Rădulescu, V., Repovš, D.: Partial Differential Equations with Variable Exponents. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  42. Rădulescu, V.: Isotropic and anistropic double-phase problems: old and new. Opuscula Math. 39(2), 259–279 (2019)

    Article  MathSciNet  Google Scholar 

  43. Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Fractional generalized random fields of variable order. Stoch. Anal. Appl. 22, 775–799 (2004)

    Article  MathSciNet  Google Scholar 

  44. Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

  45. Segatti, A., Vázquez, J.L.: On a fractional thin film equation. Adv. Nonlinear Anal. 9(1), 1516–1558 (2020)

    Article  MathSciNet  Google Scholar 

  46. Shi, X., Rădulescu, V.D., Repovš, D.D., Zhang, Q.: Multiple solutions of double phase variational problems with variable exponent. Adv. Calc. Var. (2018). https://doi.org/10.1515/acv-2018-0003

  47. Sun, H., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)

    Article  Google Scholar 

  48. Wilhelmsson, H.: Explosive instabilities of reaction–diffusion equations. Phys. Rev. A 36 (1987)

  49. Willem, M.: Minimax Theorems, vol. 24. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  50. Zuo, J., Fiscella, A.: A critical Kirchhoff type problem driven by a \(p(\cdot )\)-fractional Laplace operator with variable \(s(\cdot )\)-order. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6813

    Article  MATH  Google Scholar 

  51. Zuo, J., Fiscella, A., Bahrouni, A.: Existence and multiplicity results for \(p(\cdot )\) &\(q(\cdot )\) fractional Choquard problems with variable order. Complex Var. Elliptic Equ. (2020). https://doi.org/10.1080/17476933.2020.1835878

    Article  MATH  Google Scholar 

  52. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 29(1), 33–36 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabri Bahrouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Bahrouni, S. & Carvalho, M.L. Fractional double phase Robin problem involving variable order-exponents without Ambrosetti–Rabinowitz condition. Z. Angew. Math. Phys. 73, 99 (2022). https://doi.org/10.1007/s00033-022-01724-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01724-w

Keywords

Mathematics Subject Classification

Navigation