Skip to main content
Log in

The application of the nonsmooth critical point theory to the stationary electrorheological fluids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of variational solutions to systems modeling electrorheological fluids in the stationary case. Our method of proof is based on the nonsmooth critical point theory for locally Lipschitz functional and the properties of the generalized Lebesgue–Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Mingione G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev S.N., Rodrigues J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara, Sez. VII. Sci. Mater. 52, 19–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antontsev, S.N., Shmarev, S.I.: Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, In: Handbook of Differential Equations. Stationary Partial Differential Equations, vol. 3. Elsevier, Amsterdam, pp. 1-100, (2006)

  4. Antontsev S.N., Shmarev S.I.: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 65, 728–761 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antontsev S.N., Shmarev S.I.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bögelein V., Li Q.: Very weak solutions of degenerate parabolic systems with non-standard p(x, t)-growth. Nonliear Anal. 98, 190–225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cammaroto F., Vilasi L.: On a Schrödinger-Kirchhoff-type equation involving the p(x)-Laplacian. Nonlinear Anal. 81, 42–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarke F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  9. Del Pezzo L.M., Martínez S.: H 2 regularity for the p(x)-Laplacian in two-dimensional convex domains. J. Math. Anal. Appl. 410, 939– (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diening L., Harjulehto P., Hästö P., Růžička M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  11. Diening L., Schwarzacher S.: Global gradient estimates for the p(·)-Laplacian. Nonlinear Anal. 106, 70–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edmunds D., Rákosník J.: Sobolev embedding with variable exponent. Stud. Math. 143, 267–293 (2000)

    MATH  Google Scholar 

  13. Edmunds D., Rákosník J.: Sobolev embedding with variable exponent. II. Math. Nachr. 246, 53–67 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan X.: p(x)-Laplacian equations in \({\mathbb{R}^N}\) with periodic data and nonperiodic perturbations. J. Math. Anal. Appl. 341, 103–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fan X., Han X.: Existence and multiplicity of solutions for p(x)-Laplacian equations in R N. Nonlinear Anal. 59, 173–188 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Fan X.: Solutions for p(x)-Laplacian Dirichlet problem with singular coefficients. J. Math. Anal. Appl. 312, 464–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fan X., Shen J.S., Zhao D.: Sobolev embedding theorems for spaces \({W^{k, p(x)}(\Omega )}\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan X., Zhao D.: On the spaces L p(x) and W k, p(x). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gasinski L., Papageorgiou N.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman Hall and CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  20. Gasiński L., Papageorgiou N.S.: Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance. Proc. R. Soc. Edinb. 131A, 1091–1111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gasiński L., Papageorgiou N.: Nonlinear hemivariational inequalities at resonance. J. Math. Anal. Appl. 244, 200–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ge B.: On the superlinear problems involving the p(x)-Laplacian and a non-local term without AR-condition. Nonlinear Anal. 102, 133–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Halidias N.: A nontrivial solution of mountain-pass type for a hemivariational inequality. Bull. Sci. math. 127, 549–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu S., Papageorgiou N.: Positive solutions for nonlinear hemivariational inequalities. J. Math. Anal. Appl. 310, 161–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iannizzotto A., Papageorgiou N.: Existence of three nontrivial solutions for nonlinear Neumann hemivariational inequalities. Nonlinear Anal. 70, 3285–3297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kyritsi S., Papageorgiou N.: Multiple solutions of constant sign for nonlinear nonsmooth eigenvalue problems near resonance. Calc. Var. 20, 1–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kourogenis N., Papageorgiou N.: Three nontrivial solutions for a quasilinear elliptic differential equation at resonance with discontinuous right hand side. J. Math. Anal. Appl. 238, 477–490 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kováčik O., Rákosník J.: On spaces L p(x) and W k, p(x). Czechoslov. Math. J. 41, 592–618 (1991)

    MATH  Google Scholar 

  29. Liang S., Zhang J.: Multiple solutions for noncooperative p(x)-Laplacian equations in R N involving the critical exponent. J. Math. Anal. Appl. 403, 344–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marano S., Papageorgiou N.: On some elliptic hemivariational and variational-hemivariational inequalities. Nolinear Anal. 62, 757–774 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mihǎilescu M., Rǎdulescu V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. A 462, 2625–2641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Motreanu D., Panagiotopoulos P.D.: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  33. Motreanu, D., Rǎdulescu, V.: Variational and non-variational methods in nonlinear analysis and boundary value problems. Nonconvex Optimization and its Applications, vol. 67. Kluwer Academic Publishers, Dordrecht (2003). doi:10.1007/978-1-4757-6921-0

  34. Naniewicz Z., Panagiotopoulos P.: Mathematical Theory of Hemivariational Inequalities and Applications. Dekker, New York (1995)

    MATH  Google Scholar 

  35. Panagiotopoulos P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser Boston, Inc., Boston (1985)

    Book  MATH  Google Scholar 

  36. Pucci P., Zhang Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 257, 1529–1566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rǎdulescu V.: Mountain pass type theorems for non-differentiable functions and applications. Proc. Jpn. Acad. 69A, 193–198 (1993)

    Article  MATH  Google Scholar 

  38. Rǎdulescu V., Zhang B.: Morse theory and local linking for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Nonlinear Anal. Real World Appl. 17, 311–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rǎdulescu V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. Theory Methods Appl. 121, 336–369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rǎdulescu V., Repovs D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. CRC Press and Taylor and Francis Group, Boca Raton (2015)

    Book  MATH  Google Scholar 

  41. Repovs D.: Stationary waves of Schrödinger-type equations with variable exponent. Anal. Appl. 13, 645–661 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rodrigues J.F., Sanchon M., Urbano J.M.: The obstacle problem for nonlinear elliptic equations with variable growth and L 1-data. Monatsh. Math. 154, 303–332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Růžička M.: Electrorheological Fluids Modeling and Mathematical Theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  44. Růžička M.: Flow of shear dependent electro-rheological fluids. C. R. Acad. Sci. Paris 329, 393–398 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Winslow W.: Induced fibration of suspensions. J. Appl. Phys. 20, 1137–1140 (1949)

    Article  Google Scholar 

  46. Zhang C., Zhou S., Xue X.: Global gradient estimates for the parabolic p(x, t)-Laplacian equation. Nonlinear Anal. 105, 86–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhikov V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions, Problems in mathematical analysis. J. Math. Sci. (N. Y.) 173(54), 463–570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhou Q.: On the superlinear problems involving p(x)-Laplacian-like operators without AR-condition. Nonlinear Anal. Real World Appl. 21, 161–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyin Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C. The application of the nonsmooth critical point theory to the stationary electrorheological fluids. Z. Angew. Math. Phys. 67, 38 (2016). https://doi.org/10.1007/s00033-016-0640-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0640-4

Mathematics Subject Classification

Keywords

Navigation