Skip to main content
Log in

The existence of normalized solutions for L 2-critical constrained problems related to Kirchhoff equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of critical points for the following functional constrained on \({S_c=\{u\in H^1(\mathbb{R}^N)| |u|_2=c\}}\):

$$I(u)=\frac{a}{2}\int_{\mathbb{R}^N}|\nabla{u}|^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^N}|\nabla{u}|^{2}\right)^{2}-\frac{N}{2N+8}\int_{\mathbb{R}^N}|u|^{\frac{2N+8}{N}},$$

where N = 1, 2, 3 and a, b > 0 are constants. The constraint problem is L 2-critical. We showed that I(u) has a constraint critical point with a mountain pass geometry on S c if \({c > c^*:=(2^{-1}b|Q|_2^{\frac{8}{N}})^{\frac{N}{8-2N}}}\), where Q is the unique positive radial solution of \({-2\Delta Q+(\frac{4}{N}-1)Q=|Q|^{\frac{8}{N}} Q}\) in \({\mathbb{R}^N}\). For 0 < c < c *, I(u) has no critical point on S c , and we proved the existence of minimizers for a new perturbation functional on S c :

$$E_{a,b}(u)=\frac{a}{2} \int_{\mathbb{R}^N}|\nabla u|^2+\frac{b}{4} \left(\int_{\mathbb{R}^N}|\nabla u|^2\right)^2-\frac{1}{4} \int_{\mathbb{R}^N}V(x)|u|^{4}-\frac{N}{2N+8} \int_{\mathbb{R}^N}|u|^{\frac{2N+8}{N}}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alves C.O., Crrea F.J.S.A.: On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal. 8, 43–56 (2001)

    MATH  Google Scholar 

  2. Arosio A., Panizzi S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348(1), 305–330 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellazzini J., Jeanjean L., Luo T.J.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. 107(2–3), 303–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstain S.: Sur une classe d’équations fonctionelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. 4, 17–26 (1940)

    Google Scholar 

  5. Bellazzini J., Siciliano G.: Scaling properties of functionals and existence of constrained minimizers. J. Funct. Anal. 261, 2486–2507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A.: Global existence and uniform decay rates for the Kirchhoff–Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6(6), 701–730 (2001)

    MathSciNet  MATH  Google Scholar 

  7. D’Ancona P., Spagnolo S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108(2), 247–262 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo Y.J., Seiringer R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. He X.M., Zou W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}^3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jeanjean L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. Theory T. M. & A. 28(10), 1633–1659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeanjean L., Luo T.J.: Sharp nonexistence results of prescribed L 2-norm solutions for some class of Schrödinger–Poisson and quasi-linear equations. Z. Angrew. Math. Phys. 64(4), 937–954 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin J.H., Wu X.: Infinitely many radial solutions for Kirchhoff-type problems in \({\mathbb{R}^N}\). J. Math. Anal. Appl. 369, 564–574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

  14. Li G.B., Ye H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}^3}\). J. Differ. Equ. 257, 566–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, G.B., Ye, H.Y.: Existence of positive solutions for nonlinear Kirchhoff type problems in \({\mathbb{R}^3}\) with critical Sobolev exponent. Math. Methods Appl. Sci. 37, 2570–2584 (2014)

  16. Li Y. et al.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)

    Article  MATH  Google Scholar 

  17. Lions J.L.: On some questions in boundary value problems of mathmatical physics. In: Contemporary Development in Continuum Mechanics and Partial Differential Equations, North-Holland Math. Stud., Vol. 30, North-Holland, Amsterdam, New York, pp. 284–346 (1978)

  18. Lions P.L.: The concentration-compcatness principle in the calculus of variations. The locally compact case. I.. Ann. Inst. H. Poincaré Anal. NonLinéaire 1, 109–145 (1984)

    MATH  Google Scholar 

  19. Liu W., He X.M.: Multiplicity of high energy solutions for superlinear Kirchhoff equations. J. Appl. Math. Comput. 39, 473–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pohozaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (NS) 96 (138) (1975) 152–166, 168 (in Russian)

  21. Sun J.T., Wu T.F.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Equ. 256, 1771–1792 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang J. et al.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)

    Article  MATH  Google Scholar 

  23. Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  MATH  Google Scholar 

  24. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications. Vol. 24, Birkhäuser, Boston (1996)

  25. Wu X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in \({\mathbb{R}^N}\). Nonlinear Anal. Real World Appl. 12, 1278–1287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ye, H.Y.: The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Math. Methods Appl. Sci. doi:10.1002/mma.3247

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Ye.

Additional information

Partially supported by NSFC No.: 11371159, NSFC No.: 11301204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H. The existence of normalized solutions for L 2-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 66, 1483–1497 (2015). https://doi.org/10.1007/s00033-014-0474-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0474-x

Mathematics Subject Classification

Keywords

Navigation