Skip to main content
Log in

Bifurcation under parameter change of Riemann solutions for nonstrictly hyperbolic systems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the bifurcation of Riemann solutions due to parameter change that alters the type of an umbilic point existing in state space. Solutions with data near generic umbilic points are primarily determined by the local quadratic expansion of flux functions. We observe that near an umbilic point, the bifurcation of the solution is essentially local and its behavior depends solely on the cubic expansion of the flux functions. These phenomena are illustrated for immiscible three-phase flow in porous media, which looses strict hyperbolicity at an isolated point in the interior of the oil–water–gas saturation triangle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asakura F., Yamazaki M.: Geometry of hugoniot curves in 2 × 2 systems of hyperbolic conservation laws with quadratic flux functions. IMA J. Appl. Math. 70, 700–722 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azevedo, A.: Soluções fundamentais múltiplas em sistemas de leis de conservação hiperbólico–elíticos, D.Sc. thesis, in Portuguese, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil, (1991)

  3. Azevedo A., Marchesin D., Plohr B., Zumbrun K.: Capillary instability in models for three-phase flow. Z. Angew. Math. Phys. 53, 713–746 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azevedo, A., Sousa, A., Furtado, F., Marchesin, D.: Uniqueness of the Riemann Solution for Three-Phase Flow in a Porous Medium. In preparation.

  5. Azevedo A., Sousa A., Furtado F., Marchesin D.: The solution by the wave curve method of three-phase flow in virgin reservoirs. Transp. Porous Media 83, 99–125 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bell J., Trangenstein J., Shubin G.: Conservation laws of mixed type describing three-phase flow in porous media. SIAM J. Appl. Math. 46, 1000–1017 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bressan A.: Hyperbolic Systems of Conservation Laws. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  8. Buckley S.E., Leverett M.C.: Mechanism of fluid displacements in sands. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  9. Castañeda, P.: Private Communication

  10. Chang T., Hsiao L.: The Riemann Problem and Interaction of Waves in Gas Dymimics. Wiley, New York (1989)

    Google Scholar 

  11. Chicone C.: Quadratic gradients on the plane are generically Morse-Smale. J. Differ. Equ. 33(2), 159–166 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Courant R., Friedrichs K.: Supersonic Flow and Shock Waves. Springer, New York (1976)

    Book  MATH  Google Scholar 

  13. Dafermos C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Heiderberg (2005)

    Book  MATH  Google Scholar 

  14. Falls A.H., Schulte W.M.: Features of three-component, three-phase displacement in porous media. SPE Reserv. Eng. 7, 426–432 (1992)

    Article  Google Scholar 

  15. Falls A.H., Schulte W.M.: Theory of three-component, three-phase displacement in porous media. SPE Reserv. Eng. 7, 377–384 (1992)

    Article  Google Scholar 

  16. Furtado, F.: Structural stability of nonlinear waves for conservation laws. Ph.D. thesis, NYU (1989)

  17. Gel’Fand I.: Some problems in theory of quasilinear equations. Am. Math. Soc. Trans. (2) 29, 295–381 (1963)

    MATH  Google Scholar 

  18. Gomes, M.E.: Problema de Riemann singular para um modelo de quarta ordem em escoamento multifásico. D.Sc. thesis, in Portuguese, Pontifícia Universidade Católica, Rio de Janeiro, Brazil (1987)

  19. Guzman R., Fayers F.: Mathematical properties of three-phase flow equations. SPE J. 2, 291–300 (1997)

    Article  Google Scholar 

  20. Guzman R., Fayers F.: Solutions to the three-phase Buckley–Leverett problem. SPE J. 2, 301–311 (1997)

    Article  Google Scholar 

  21. Isaacson E., Marchesin D., Palmeira C.F., Plohr B.: A global formalism for nonlinear waves in conservation laws. Commun. Math. Phys. 146, 505–552 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Isaacson E., Marchesin D., Plohr B.: Transitional waves for conservation laws. SIAM J. Math. Anal. 21(4), 837–866 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Isaacson E., Marchesin D., Plohr B., Temple J.B.: The Riemann problem near a hyperbolic singularity: the classification of quadratic Riemann problems I. SIAM J. Appl. Math. 48(5), 1009–1032 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Isaacson E., Marchesin D., Plohr B., Temple J.B.: Multiphase flow models with singular Riemann problems. Mat. Apl. Comput. 11(2), 147–166 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Isaacson E., Temple B.: The Riemann problem near a hyperbolic singularity II. SIAM J. Appl. Math. 48(6), 1287–1301 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Isaacson E., Temple B.: The Riemann problem near a hyperbolic singularity III. SIAM J. Appl. Math. 48(6), 1302–1318 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Isaacson E., Temple J.B.: Nonlinear resonance in system of conservation laws. SIAM J. Appl. Math. 52, 1260–1278 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jackson MD, Blunt MJ: Elliptic regions and stable solutions for three-phase flow in porous media. Transp. Porous Media 48, 249–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Juanes R., Patzek T.: Relative permeabilities for strictly hyperbolic models of three-phase flow in porous media. Transp. Porous Media 57, 125–152 (2004)

    Article  MathSciNet  Google Scholar 

  30. Keyfitz B., Kranzer H.: A system of non-strictly hyperbolic conservation laws arising in elasticity theory. Arch. Ration. Mech. Anal. 72, 219–241 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lax P.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  32. Leverett M.C., Lewis W.B.: Steady flow of gas-oil-water mixtures through unconsolidated sands. Trans. SPE AIME 142, 107–116 (1941)

    Article  Google Scholar 

  33. Liu T.-P.: The Riemann problem for general 2 × 2 conservation laws. Trans. AMS 199, 89–112 (1974)

    MATH  Google Scholar 

  34. Marchesin D., Azevedo A.V.F., Eschenazi C.S., Palmeira C.F.B.: Topological resolution of Riemann problems for pairs of conservation laws. Q. Appl. Math. 68, 375–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marchesin D., Plohr B.J.: Wave structure in WAG recovery. SPE J. 6(2), 209–219 (2001)

    Article  Google Scholar 

  36. Matos, V.: Problema de Riemann para duas leis de conservação do tipo iv com região eliptica. Ph.D. thesis, in Portuguese, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil (2004)

  37. Matos, V., Castañeda, P., Marchesin, D.: Classification of the umbilic point for general three-phase immiscible flow in porous media. In: Proceedings of the 14th International Conference on Hyperbolic Problems: Theory, Numerics, Application (Padova, Italy), AIMS (2013)

  38. Matos V., Marchesin D.: Large viscous solutions for small data in systems of conservation laws that change type. J. Hyperbolic Differ. Eq. 2, 257–278 (2006)

    MathSciNet  Google Scholar 

  39. Medeiros H.: Stable hyperbolic singularities for three-phase flow models in oil reservoir simulation. Acta Appl. Math. 28, 135–159 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oleinik O.: On the uniqueness of the generalized solution of a Cauchy problem for a nonlinear system of equation occurring in mechanics. Uspekhi Math. Nauk 73, 169–176 (1957)

    MathSciNet  Google Scholar 

  41. Rezende, F.S.: Ondas elementares no modelo de escoamento trifásico. D.Sc. thesis, in Portuguese, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil (1998)

  42. Rodrigues-Bermudez P., Marchesin D.: Riemann solutions for vertical flow of three phases in porous media: simple cases. J. Hyperbolic Differ. Eqs. 10, 335–370 (2013)

    Article  Google Scholar 

  43. Schaeffer, D., Shearer, M. (Appendix with D. Marchesin, and P. Paes-Leme): The classification of 2 × 2 systems of non-strictly hyperbolic conservation laws, with application to oil recovery. Commun. Pure Appl. Math. XL, 141–178 (1987)

  44. Schaeffer, D.G., Shearer, M.: Riemann problems for nonstrictly hyperbolic 2 × 2 systems of conservation laws. Trans. Am. Math. Soc. 304(1), 267–306 (1987)

  45. Schecter S., Marchesin D., Plohr B.: Structurally stable Riemann solutions. J. Differ. Equ. 126, 303–354 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Serre D.: Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  47. Shearer M.: The Riemann problem for 2 × 2 systems of hyperbolic conservation laws with case I quadratic nonlinearities. J. Differ. Equ. 80, 343–363 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shearer M., Schaeffer D., Marchesin D., Paes-Leme P.: Solution of the Riemann problem for a prototype 2 × 2 system of non-strictly hyperbolic conservation laws. Arch. Ration. Mech. Anal. 97, 299–320 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shearer M., Trangenstein J.: Loss of real characteristics for models of three-phase flow in a porous medium. Transp. Porous Media 4, 499–525 (1989)

    Article  Google Scholar 

  50. Smoller J.: Shock Waves and Reaction-Diffusion Equations, Second ed. Springer, New York (1994)

    Book  Google Scholar 

  51. Souza A.: Stability of singular fundamental solutions under perturbations for flow in porous media. Mat. Apl. Comput. 11, 73–115 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Stone H.: Probability model for estimating 3-phase relative permeability. J. Petr. Tech. 22, 214–218 (1970)

    Article  Google Scholar 

  53. Trangenstein, J.: Three-phase flow with gravity, Current Progress in Hyperbolic Systems: Riemann Problems and Computations (Bowdoin, 1988) (B. Lindquist, ed.), Contemporary Mathematics, vol. 100, American Mathematics Society, Providence, RI, pp. 147–159 (1989)

  54. Wendroff, B.: The Riemann problem for materials with non-convex equations of state: I Isentropic flow; II General flow. J. Math. Anal. and Appl. 38, 454–466; 640–658 (1972)

  55. Wenstrom J.H., Plohr B.J.: Classification of homogeneous quadratic conservation laws with viscous terms. Comput. Appl. Math. 26(2), 251–283 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Matos.

Additional information

This work was partially supported by CNPq under Grants PCI 302791/2011-6, PCI 170181/2013-8; 479186/06-5; 301564/2009-4, 470635/2012-6, 490707/2008-4, 402299/2012-4; FCT under Grant SFRH/BSAB/1164/2011; FAPEG under grant 005/2012-Universal FAPERJ under Grants E-26/111.416/2010, E-26/102.965/2011, E-26/110.658/2012, E-26/111.369/2012, E-26/1110.114/2013; ANP-PRH32-731948/2010; Petrobras-PRH32-6000.0069459.11.4. The first three authors gratefully acknowledge the hospitality of IMPA during this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, V., Azevedo, A.V., Da Mota, J.C. et al. Bifurcation under parameter change of Riemann solutions for nonstrictly hyperbolic systems. Z. Angew. Math. Phys. 66, 1413–1452 (2015). https://doi.org/10.1007/s00033-014-0469-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0469-7

Mathematics Subject Classification

Keywords

Navigation