Skip to main content
Log in

A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We derive gradient-flow formulations for systems describing drift-diffusion processes of a finite number of species which undergo mass-action type reversible reactions. Our investigations cover heterostructures, where material parameter may depend in a nonsmooth way on the space variable. The main results concern a gradient-flow formulation for electro-reaction–diffusion systems with active interfaces permitting drift-diffusion processes and reactions of species living on the interface and transfer mechanisms allowing bulk species to jump into an interface or to pass through interfaces. The gradient flows are formulated in terms of two functionals: the free energy and the dissipation potential. Both functionals consist of a bulk and an interface integral. The interface integrals determine the interface dynamics as well as the self-consistent coupling to the model in the bulk. The advantage of the gradient structure is that it automatically generates thermodynamically consistent models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albinus G., Gajewski H., Hünlich R.: Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2), 367–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandelow U., Gajewski H., Hünlich R.: Fabry-perot lasers: thermodynamics based modeling. In: Piprek, J. (ed) Optoelectronic Devices: Advanced Simulation and Analysis, pp. 63–85. Springer, Berlin (2005)

    Chapter  Google Scholar 

  3. Bandelow U., Hünlich R., Koprucki T.: Simulation of static and dynamic properties of edge-emitting multiple-quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 9, 798–806 (2003)

    Article  Google Scholar 

  4. Desvillettes L., Fellner K.: Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319, 157–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Groot S., Mazur P.: Non-Equilibrium Thermodynamics. Dover, New York, NY (1984)

    Google Scholar 

  6. Érdi P., Tóth J.: Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models. Princeton University Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  7. Feinberg M., Horn F.J.M.: Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Arch. Ration. Mech. Anal. 66(1), 83–97 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gajewski H., Gröger K.: Initial boundary value problems modelling heterogeneous semiconductor devices. In: Schulze, B.-W., Triebel, H. (eds) Surveys on Analysis, Geometry and Mathematical Physics, vol. 117 of Teubner-Texte zur Mathematik, pp. 4–53. Teubner, Leipzig (1990)

    Google Scholar 

  9. Gajewski H., Gröger K.: Reaction-diffusion processes of electrically charged species. Math. Nachr. 177, 109–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glitzky A., Gröger K., Hünlich R.: Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60, 201–217 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glitzky A., Gärtner K.: Energy estimates for continuous and discretized electro-reaction-diffusion systems. Nonlinear Anal. 70, 788–805 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glitzky A., Hünlich R.: Energetic estimates and asymptotic for electro-reaction-diffusion systems. Z. angew. Math. Mech. 77(11), 823–832 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glitzky A.: Analysis of a spin-polarized drift-diffusion model. Adv. Sci. Appl. 18, 401–427 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Glitzky A.: Exponential decay of the free energy for discretized electro-reaction-diffusion systems. Nonlinearity 21, 1989–2009 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glitzky A.: Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discret. Continuous Dyn. Syst. A 25, 159–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glitzky A.: Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-diffusion systems. Math. Nachr. 284, 2159–2174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glitzky A.: Analysis of electronic models for solar cells including energy resolved defect densities. Math. Methods Appl. Sci. 34, 1980–1998 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glitzky, A.: An electronic model for solar cells including active interfaces and energy resolved defect densities. WIAS preprint 1663 (2011, submitted)

  19. Gröger K.: Asymptotic behavior of solutions to a class of diffusion-reaction equations. Math. Nachr. 112, 19–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mielke A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24, 1329–1346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mielke, A.: Thermomechanical modeling of energy-reaction-diffusion systems, including bulk–interface interactions. Discret. Continuous Dyn. Syst. Ser. S. WIAS preprint 1661 (2012, to appear)

  23. Otto F.: Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141(1), 63–103 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stangl R., Leendertz C., Haschke J.: Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. In: Rugescu, R.D. (ed) Solar Energy, pp. 319–352. INTECH, Croatia (2010)

    Google Scholar 

  26. Vlad M.O., Ross J.: Thermodynamically based constraints for rate coefficients of large biochemical networks. WIREs Syst. Biol. Med. 1, 348–358 (2009)

    Article  Google Scholar 

  27. Wegscheider R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme. Z. Phys. Chemie 39, 257–303 (1902)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret Glitzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glitzky, A., Mielke, A. A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64, 29–52 (2013). https://doi.org/10.1007/s00033-012-0207-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0207-y

Mathematics Subject Classification

Keywords

Navigation