Skip to main content
Log in

The Cahn-Hilliard Equation with Logarithmic Potentials

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

Our aim in this article is to discuss recent issues related with the Cahn-Hilliard equation in phase separation with the thermodynamically relevant logarithmic potentials; in particular, we are interested in the well-posedness and the study of the asymptotic behavior of the solutions (and, more precisely, the existence of finite-dimensional attractors). We first consider the usual Neumann boundary conditions and then dynamic boundary conditions which account for the interactions with the walls in confined systems and have recently been proposed by physicists. We also present, in the case of dynamic boundary conditions, some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal. 194, 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels H., Feireisl E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J. 57, 659–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abels H., Wilke M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67, 3176–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen S.M., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  5. Alt H.W., Pawłow I.: A mathematical model of dynamics of non-isothermal phase separation. Physica D 59, 389–416 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alt H.W., Pawłow I.: Existence of solutions for non-isothermal phase separation. Adv. Math. Sci. Appl. 1, 319–409 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Babin A.V., Vishik M.I.: Attractors of evolution equations. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  8. Bai F., Elliott C.M., Gardiner A.: A. Spence and A.M. Stuart, The viscous Cahn-Hilliard equation. Part I:. computations, Nonlinearity 8, 131–160 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Baňas L., Nürnberg R.: A multigrid method for the Cahn-Hilliard equation with obstacle potential. Appl. Math. Comput. 213, 290–303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrett J.W., Blowey J.F.: An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer. Math. 72, 257–287 (1995)

    Article  MathSciNet  Google Scholar 

  11. Barrett J.W., Blowey J.F.: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math. Comp. 68, 487–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barrett J.W., Blowey J.F., Garcke H.: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37, 286–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bartels S., Müller R.: A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Interfaces Free Bound. 12, 45–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential, submitted.

  15. Bates P.W., Han J.: The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J. Diff. Eqns. 212, 235–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Binder K., Frisch H.L.: Dynamics of surface enrichment: A theory based on the Kawasaki spin-exchange model in the presence of a wall. Z. Phys. B 84, 403–418 (1991)

    Article  Google Scholar 

  17. Blömker D., Gawron B., Wanner T.: Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete Cont. Dyn. Systems 27, 25–52 (2010)

    Article  MATH  Google Scholar 

  18. Blömker D., Maier-Paape S., Wanner T.: Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. Trans. Amer. Math. Soc. 360, 449–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Blowey J.F., Elliott C.M.: The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I. Mathematical analysis. Eur. J. Appl. Math. 2, 233–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bo L., Shi K., Wang Y.: Support theorem for a stochastic Cahn-Hilliard equation. Electron. J. Prob. 15, 484–525 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Bo L., Wang Y.: Stochastic Cahn-Hilliard partial differential equations with Lévy spacetime white noise. Stochastics and Dynamics 6, 229–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bonetti E., Colli P., Dreyer W., Gilardi G., Schimperna G., Sprekels J.: On a model for phase separation in binary alloys driven by mechanical effects. Physica D 165, 48–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bonetti E., Dreyer W., Schimperna G.: Global solution to a viscous Cahn-Hilliard equation for tin-lead alloys with mechanical stresses. Adv. Diff. Eqns. 2, 231–256 (2003)

    MathSciNet  Google Scholar 

  24. Bonfoh A., Grasselli M., Miranville A.: Long time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Math. Methods Appl. Sci. 31, 695–734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bonfoh A., Grasselli M., Miranville A.: Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation. Topol. Methods Nonlinear Anal. 35, 155–185 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Bonfoh A., Grasselli M., Miranville A.: Singularly perturbed 1D Cahn-Hilliard equation revisited. Nonlinear Diff. Eqns. Appl. (NoDEA) 17, 663–695 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bonfoh A., Miranville A.: On Cahn-Hilliard-Gurtin equations. Nonlinear Anal. 47, 3455–3466 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boyer F.: Nonhomogeneous Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 225–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Boyer F.: A theoretical and numerical model for the study of incompressible mixture flows. Computers and Fluids 31, 41–68 (2002)

    Article  MathSciNet  Google Scholar 

  30. Boyer F., Chupin L., Fabrie P.: Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model. Eur. J. Mech. B Fluids 23, 759–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Boyer F., Lapuerta C.: Study of a three component Cahn-Hilliard flow model. M2AN Math. Model. Numer. Anal. 40, 653–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Boyer F., Lapuerta C., Minjeaud S., Piar B.: A local adaptive refinement method with multigrid preconditionning illustrated by multiphase flows simulations. ESAIM Proc. 27, 15–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Boyer F., Lapuerta C., Minjeaud S., Piar B., Quintard M.: Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82, 463–483 (2010)

    Article  MathSciNet  Google Scholar 

  34. Boyer F., Minjeaud S.: Numerical schemes for a three component Cahn-Hilliard model, M2AN. Math. Model. Numer. Anal. 45, 697–738 (2011)

    Article  MathSciNet  Google Scholar 

  35. Caffarelli L.A., Muler N.E.: An L bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133, 129–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Caginalp G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Caginalp and X. Chen, Phase field equations in the singular limit of sharp interface problems, in On the evolution of phase boundaries, IMA Vol. Math. Appl. 43, M. Gurtin ed., Springer, New York, 1–27, 1992.

  38. Caginalp G., Chen X.: Convergence of the phase field model to its sharp interface limits. European J. Appl. Math. 9, 417–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cahn J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  40. Cahn J.W., Elliott C.M., Novick-Cohen A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system I Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  42. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system III. Nucleation in a two component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Article  Google Scholar 

  43. Cardon-Weber C.: Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernouilli 7, 777–816 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Carrive M., Miranville A., Piétrus A.: The Cahn-Hilliard equation for deformable continua. Adv. Math. Sci. Appl. 10, 539–569 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Carvalho A.N., Dlotko T.: Dynamics of the viscous Cahn-Hilliard equation. J. Math. Anal. Appl. 344, 703–725 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. V. Chalupeckí, Numerical studies of Cahn-Hilliard equations and applications in image processing, in Proceedings of Czech-Japanese Seminar in Applied Mathematics 2004 (August 4-7, 2004), Czech Technical University in Prague.

  47. Cherfils L., Miranville A.: Generalized Cahn-Hilliard equations with a logarithmic free energy. Rev. Real Acad. Sci. 94, 19–32 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Cherfils L., Miranville A.: On the Caginalp system with dynamic boundary conditions and singular potentials. Appl. Math. 54, 89–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Cherfils, S. Gatti and A. Miranville, Corrigendum to “Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials” [J. Math. Anal. Appl. 343 (2008), 557–566], J. Math. Anal. Appl. 348 (2008), 1029–1030.

  50. Cherfils L., Petcu M., Pierre M.: A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete Cont. Dyn. Systems 27, 1511–1533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chill R., Fašangová E., Prüss J.: Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions. Math. Nachr. 279, 1448–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Cholewa J.W., Dlotko T.: Global attractor for the Cahn-Hilliard system. Bull. Austral. Math. Soc. 49, 277–293 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  53. Cholewa J.W., Dlotko T.: Global attractors in abstract parabolic problems, London Mathematical Society Lecture Notes Series, Vol. 278,. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  54. Choo S.M., Chung S.K.: Asymtotic behaviour of the viscous Cahn-Hilliard equation. J. Appl. Math. Comput. 11, 143–154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Chupin L.: An existence result for a mixture of non-newtonian fluids with stressdiffusion using the Cahn-Hilliard formulation. Discrete Cont. Dyn. Systems B 3, 45–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Cohen D., Murray J.M.: A generalized diffusion model for growth and dispersion in a population. J. Math. Biol. 12, 237–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  57. Conti M., Coti Zelati M.: Attractors for the Cahn-Hilliard equation with memory in 2D. Nonlinear Anal. 72, 1668–1682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Conti M., Mola G.: 3-D viscous Cahn-Hilliard equation with memory. Math. Methods Appl. Sci. 32, 1370–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Cook H.: Brownian motion in spinodal decomposition. Acta Metall. 18, 297–306 (1970)

    Article  Google Scholar 

  60. Copetti M.I.M., Elliott C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  61. Da Prato G.: A. Debussche, Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26, 241–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  62. Dal Passo R., Giacomelli L.: A. Novick-Cohen, Existence for an Allen-Cahn/Cahn- Hilliard system with degenerate mobility. Interfaces Free Bound. 1, 199–226 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  63. Debussche A., Dettori L.: On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 24, 1491–1514 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  64. Debussche A., Zambotti L.: Conservative stochastic Cahn-Hilliard equation with reflection. Ann. Probab. 35, 1706–1739 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Dlotko T.: Global attractor for the Cahn-Hilliard equation in H2 and H3. J. Diff. Eqns. 113, 381–393 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  66. Dolcetta I.C., Vita S.F.: Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free Bound. 4, 325–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  67. Eden A., Foias C., Nicolaenko B., Temam R.: Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, Vol. 37,. John-Wiley, New York (1994)

    Google Scholar 

  68. Eden A., Kalantarov V.K.: The convective Cahn-Hilliard equation. Appl. Math. Lett. 20, 455–461 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Eden A., Kalantarov V.K.: 3D convective Cahn-Hilliard equation. Commun. Pure Appl. Anal. 6, 1075–1086 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Eden, V. Kalantarov and S.V. Zelik, Infinite energy solutions for the Cahn-Hilliard equation in cylindrical domains, submitted.

  71. Efendiev M., Gajewski H., Zelik S.: The finite dimensional attractor for a 4th order system of the Cahn-Hilliard type with a supercritical nonlinearity. Adv. Diff. Eqns. 7, 1073–1100 (2002)

    MathSciNet  MATH  Google Scholar 

  72. Efendiev M., Miranville A.: New models of Cahn-Hilliard-Gurtin equations. Contin. Mech. Thermodyn. 16, 441–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  73. Efendiev M., Miranville A., Zelik S.: Exponential attractors for a nonlinear reactiondiffusion system in \({\mathbb {R}^3}\) . C.R. Acad. Sci. Paris Série I Math. 330, 713–718 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Efendiev M., Miranville A., Zelik S.: Exponential attractors for a singularly perturbed Cahn-Hilliard system. Math. Nach. 272, 11–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  75. Elezovic N., Mikelic A.: On the stochastic Cahn-Hilliard equation. Nonlinear Anal. 16, 1169–1200 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  76. C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical models for phase change problems, J.F. Rodrigues ed., International Series of Numerical Mathematics, Vol. 88, Birkhäuser, Basel, 1989.

  77. Elliott C.M., French D.A.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 38, 97–128 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  78. Elliott C.M., French D.A.: A non-conforming finite element method for the twodimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26, 884–903 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  79. Elliott C.M., French D.A., Milner F.A.: A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54, 575–590 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  80. Elliott C.M., Garcke H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  81. Elliott C.M., Garcke H.: Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D 109, 242–256 (1997)

    Article  MathSciNet  Google Scholar 

  82. C.M. Elliott and S. Luckhaus, A generalized diffusion equation for phase separation of a multi-component mixture with interfacial energy, SFB 256 Preprint No. 195, University of Bonn, 1991.

  83. Elliott C.M., Stuart A.M.: Viscous Cahn-Hilliard equation II. Analysis. J. Diff. Eqns. 128, 387–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  84. Elliott C.M., Zheng S.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  85. Eyre J.D.: Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53, 1686–1712 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  86. J.D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in Computational and mathematical models of microstructural evolution, J.W. Bullard, R. Kalia, M. Stoneham and L.Q. Chen eds., The Materials Research Society, 1998.

  87. Feng X., Prohl A.: Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99, 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  88. Feng X., Prohl A.: Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem. Interfaces Free bound. 7, 1–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  89. Feng W.M., Yu P., Hu S.Y., Liu Z.K., Du Q., Chen L.Q.: A Fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity. Commun. Comput. Phys. 5, 582–599 (2009)

    MathSciNet  Google Scholar 

  90. Fischer H.P., Maass P., Dieterich W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79, 893–896 (1997)

    Article  Google Scholar 

  91. Fischer H.P., Maass P., Dieterich W.: Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett 42, 49–54 (1998)

    Google Scholar 

  92. Fischer H.P., Reinhard J., Dieterich W., Gouyet J.-F., Maass P., Majhofer A., Reinel D.: Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys 108, 3028–3037 (1998)

    Google Scholar 

  93. FreeFem++ is freely available at http://www.freefem.org/ff++.

  94. Furihata D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math 87, 675–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  95. Gajewski H. Zacharias K.: On a nonlocal phase separation model, J. Math. Anal. Appl 286, 11–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  96. Gal C.G.: A Cahn-Hilliard model in bounded domains with permeable walls, Math. Methods Appl. Sci 29, 2009–2036 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  97. Gal C.G.: Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electron. J. Diff. Eqns 2006, 1–23 (2006)

    Google Scholar 

  98. Gal C.G., Grasselli M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401–436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  99. Gal C.G. Grasselli M.: Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Cont. Dyn. Systems 28, 1–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  100. Gal C.G., Miranville A.: Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl 10, 1738–1766 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  101. Gal C.G., Miranville A.: Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions, Discrete Cont. Dyn. Systems S 2, 113–147 (2009)

    MathSciNet  MATH  Google Scholar 

  102. GalC.G. Wu H.: Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Cont. Dyn. Systems 22, 1041–1063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  103. Galenko P., Jou D: Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Physica A 388, 3113–3123 (2009)

    Article  MathSciNet  Google Scholar 

  104. Galenko P., Lebedev V.: Analysis of the dispersion relation in spinodal decomposition of a binary system, Philos. Mag. Lett 87, 821–827 (2007)

    Article  Google Scholar 

  105. Galenko P. Lebedev V: Local nonequilibrium effect on spinodal decomposition in a binary system, Int. J. Thermodyn 11, 21–28 (2008)

    Google Scholar 

  106. Galenko P. Lebedev V.: Nonequilibrium effects in spinodal decomposition of a binary system, Phys. Lett. A 372, 985–989 (2008)

    Article  MATH  Google Scholar 

  107. GaoW. Yin J.: System of Cahn-Hilliard equations with nonconstant interaction matrix, Chinese Ann. Math., Ser. A 20, 169–176 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  108. Garcke H.: On Cahn-Hilliard systems with elasticity, Proc. Roy. Soc. Edinburgh A 133, 307–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  109. Garcke H.: On a Cahn-Hilliard model for phase separation with elastic misfit, Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 165–185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  110. H. Garcke, Mechanical effects in the Cahn-Hilliard model: A review on mathematical results, in Mathematical methods and models in phase transitions, A. Miranville ed., Nova Sci. Publ., New York, 43–77, 2005.

  111. Garcke H. Weikard U.: Numerical approximation of the Cahn-Larché equation, Numer. Math 100, 639–662 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  112. Gatti S., Grasselli M., Miranville A., Pata V.: On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl 312, 230–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  113. Gatti S., Grasselli M., Miranville A., Pata V.: Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sci 15, 165–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  114. Gatti S., Grasselli M., Miranville A., Pata V.: Memory relaxation of first order evolution equations. Nonlinearity 18, 1859–1883 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  115. S. Gatti, M. Grasselli, A. Miranville and V. Pata, Memory relaxation of the onedimensional Cahn-Hilliard equation, in Dissipative phase transitions, Ser. Adv. Math. Appl. Sci., Vol. 71, World Sci. Publ., Hackensack, NJ, 101–114, 2006.

  116. Giacomin G. Lebowitz J.L.: Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Statist. Phys 87, 37–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  117. Giacomin G., Lebowitz J.L.: Phase segregation dynamics in particle systems with long range interaction II. Interface motion, SIAM J. Appl. Math 58, 1707–1729 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  118. Gilardi G., Miranville A., Schimperna G.: On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal. 8, 881–912 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  119. Gilardi G., Miranville A., Schimperna G.: Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chinese Ann. Math., Ser. B 31, 679–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  120. Goldstein G.R., Miranville A., Schimperna G.: A Cahn-Hilliard model in a domain with non-permeable walls. Physica D 240, 754–766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  121. Golovin A.A., Nepomnyashchy A.A., Davis S.H., Zaks M.A.: Convective Cahn-Hilliard models: from coarsening to roughening. Phys. Rev. Lett 86, 1550–1553 (2001)

    Article  Google Scholar 

  122. Gomez H., Calo V.M., Basilevs Y., Hughes T.J.R.: Isogeometric analysis of Cahn-Hilliard phase field model. Comput. Methods Appl. Mech. Engrg 197, 4333–4352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  123. Goudenège L.: Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection. Stochastic Process. Appl 119, 3516–3548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  124. L. Goudenège, D. Martin and G. Vial, High order finite element calculations for the deterministic Cahn-Hilliard equation, submitted.

  125. Grasselli M., Miranville A., Rossi R., Schimperna G.: Analysis of the Cahn-Hilliard equation with a chemical potential dependent mobility, Commun. Partial Diff. Eqns 36, 1193–1238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  126. Grasselli M. Pierre M.: A splitting method for the Cahn-Hilliard equation with inertial term, Math. Models Methods Appl. Sci 20, 1–28 (2010)

    Article  MathSciNet  Google Scholar 

  127. Grasselli M., Schimperna G., Miranville A.: The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Cont. Dyn. Systems 28, 67–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  128. Grasselli M., Schimperna G., Segatti A., Zelik S.: On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Eqns 9, 371–404 (2009)

    Article  MathSciNet  Google Scholar 

  129. Grasselli M., Schimperna G., Zelik S.: On the 2D Cahn-Hilliard equation with inertial term, Commun. Partial Diff. Eqns 34, 137–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  130. Grasselli M., Schimperna G., Zelik S.: Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term. Nonlinearity 23, 707–737 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  131. Guo B., Wang G., Wang S.: Well posedness for the stochastic Cahn-Hilliard equation driven by Lévy space-time white noise, Diff. Int. Eqns 22, 543–560 (2009)

    MATH  Google Scholar 

  132. Gurtin M.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  133. Gurtin M., Polignone D., Vinals J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci 6, 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  134. He L., Liu Y.: A class of stable spectral methods for the Cahn-Hilliard equation. J. Comput. Phys 228, 5101–5110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  135. Injrou S., Pierre M.: Stable discretizations of the Cahn-Hilliard-Gurtin equations. Discrete Cont. Dyn. Systems 22, 1065–1080 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  136. Injrou S., Pierre M.: Error estimates for a finite element discretization of the Cahn-Hilliard-Gurtin equations. Diff. Int. Eqns 15, 1161–1192 (2010)

    MathSciNet  MATH  Google Scholar 

  137. Jacquemin D.: Calculation of two phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys 155, 96–127 (1999)

    Article  MathSciNet  Google Scholar 

  138. Kay D., Styles V., Süli E.: Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection, SIAM J. Numer. Anal 47, 2660–2685 (2009)

    Article  MATH  Google Scholar 

  139. Kay D., Styles V., Welford R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound 10, 15–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  140. Kenmochi N., Niezgódka M., Pawłow I.: Subdifferential operator approach to the Cahn-Hilliard equation with constraint. J. Diff. Eqns 117, 320–356 (1995)

    Article  MATH  Google Scholar 

  141. Kenzler R., Eurich F., Maass P., Rinn B., Schropp J., Bohl E., Dieterich W.: Phase separation in confined geometries: solving the Cahn-Hilliard equation with generic boundary conditions. Comput. Phys. Commun 133, 139–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  142. Kim J.: Phase field computations for ternary fluid flows. Comput. Methods Appl. Mech. Engrg 196, 4779–4788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  143. Kim J.: Three-dimensional numerical simulations of a phase-field model for anisotropic interfacial energy. Commun. Korean Math. Soc 22, 453–464 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  144. Kim J.: A numerical method for the Cahn-Hilliard equation with a variable mobility. Commun. Nonlinear Sci. Numer. Simul 12, 1560–1571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  145. Kim J.: A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows. Comput. Methods Appl. Mech. Engrg 198, 37–40 (2009)

    Google Scholar 

  146. Kim J., Kang K.: A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility. Appl. Numer. Math 59, 1029–1042 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  147. Kim J., Lowengrub J.: Phase field modeling and simulation of three-phase flows. Interfaces Free Bound 7, 435–466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  148. Klapper I., Dockery J.: Role of cohesion in the material description of biofilms. Phys. Rev. E 74, 0319021–0319028 (2006)

    Article  MathSciNet  Google Scholar 

  149. Kohn R.V., Otto F.: Upper bounds for coarsening rates. Commun. Math. Phys 229, 375–395 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  150. Langer J.S.: Theory of spinodal decomposition in alloys, Ann. Phys 65, 53–86 (1975)

    Google Scholar 

  151. Lecoq N., Zapolsky H., Galenko P.: Evolution of the structure factor in a hyperbolic model of spinodal decomposition, Eur. Phys. J. Special Topics 177, 165–175 (2009)

    Article  Google Scholar 

  152. Lee H.G., Kim J.: A second-order accurate non-linear difference scheme for the N-component Cahn-Hilliard system. Physica A 387, 19–20 (2008)

    Google Scholar 

  153. Li D., Zhong C.: Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Diff. Eqns 149, 191–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  154. Liu C.: Convective Cahn-Hilliard equation with degenerate mobility. Dyn. Cont. Discrete Impuls. Systems Ser. A Math. Anal 16, 15–25 (2009)

    MATH  Google Scholar 

  155. Liu C., Shen J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  156. Lowengrub J., Truskinovski L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. Royal Soc. London Ser. A 454, 2617–2654 (1998)

    Article  MATH  Google Scholar 

  157. Ma T., Wang S.: Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Cont. Dyn. Systems 11, 741–784 (2009)

    MATH  Google Scholar 

  158. Maier-Paape S., Mischaikow K., Wanner T.: Rigorous numerics for the Cahn-Hilliard equation on the unit square. Rev. Mat. Complutense 21, 351–426 (2008)

    MathSciNet  MATH  Google Scholar 

  159. Maier-Paape S., Wanner T.: Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part I: Probability and wavelength estimate, Commun. Math. Phys 195, 435–464 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  160. Maier-Paape S., Wanner T.: Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics. Arch. Ration. Mech. Anal 151, 187–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  161. Miranville A.: Some generalizations of the Cahn-Hilliard equation. Asymptotic Anal 22, 235–259 (2000)

    MathSciNet  MATH  Google Scholar 

  162. Miranville A.: Long-time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal. Real World Appl 2, 273–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  163. Miranville A.: Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions. Physica D 158, 233–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  164. MiranvilleA. Piétrus A.: A new formulation of the Cahn-Hilliard equation. Nonlinear Anal. Real World Appl 7, 285–307 (2006)

    Article  MathSciNet  Google Scholar 

  165. Miranville A., Rougirel A.: Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations. Z. Angew. Math. Phys 57, 244–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  166. MiranvilleA. Schimperna G.: Nonisothermal phase separation based on a microforce balance. Discrete Cont. Dyn. Systems B 5, 753–768 (2005)

    Article  Google Scholar 

  167. Miranville A., Schimperna G.: Generalized Cahn-Hilliard equations for multicomponent alloys. Adv. Math. Sci. Appl 19, 131–154 (2009)

    MathSciNet  MATH  Google Scholar 

  168. Miranville A., Schimperna G.: On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete Cont. Dyn. Systems B 14, 675–697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  169. MiranvilleA. Zelik S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci 27, 545–582 (2004)

    Article  MathSciNet  Google Scholar 

  170. Miranville A., Zelik S.: Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions. Math. Methods Appl. Sci 28, 709–735 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  171. A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Vol. 4, C.M. Dafermos and M. Pokorny eds., Elsevier, Amsterdam, 103–200, 2008.

  172. Miranville A., Zelik S.: Doubly nonlinear Cahn-Hilliard-Gurtin equations. Hokkaido Math. J 38, 315–360 (2009)

    MathSciNet  MATH  Google Scholar 

  173. Miranville A., Zelik S.: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete Cont. Dyn. Systems 28, 275–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  174. B. Nicolaenko and B. Scheurer, Low dimensional behaviour of the pattern formation equations, in Trends and practice of nonlinear analysis, V. Lakshmikantham ed., North-Holland, 1985.

  175. Nicolaenko B., Scheurer B., Temam R.: Some global dynamical properties of a class of pattern formation equations. Commun. Partial Diff. Eqns 14, 245–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  176. Novick-Cohen A.: Energy methods for the Cahn-Hilliard equation. Quart. Appl. Math 46, 681–690 (1988)

    MathSciNet  MATH  Google Scholar 

  177. A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material instabilities in continuum and related problems, J.M. Ball ed., Oxford University Press, Oxford, 329–342, 1988.

  178. Novick-Cohen A.: The Cahn-Hilliard equation: Mathematical and modeling perspectives. Adv. Math. Sci. Appl 8, 965–985 (1998)

    MathSciNet  MATH  Google Scholar 

  179. Novick-Cohen A.: Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system. Physica D 137, 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  180. A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Vol. 4, C.M. Dafermos and M. Pokorny eds., Elsevier, Amsterdam, 201–228, 2008.

  181. Oron A., Davis S.H., Bankoff S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys 69, 931–980 (1997)

    Article  Google Scholar 

  182. Pawłow I., Zajaczkowski W.M.: Strong solvability of 3-D Cahn-Hilliard system in elastic solids. Math. Methods Appl. Sci 32, 879–914 (2008)

    Google Scholar 

  183. Pawłow I. Zajaczkowski W.M.: Weak solutions to 3-D Cahn-Hilliard system in elastic solids. Topol. Methods Nonlinear Anal 32, 347–377 (2008)

    MathSciNet  MATH  Google Scholar 

  184. Pawłow I., Zajaczkowski W.M.: Global regular solutions to Cahn-Hilliard system coupled with viscoelasticity. Math. Methods Appl. Sci 32, 2197–2242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  185. Pawłow I., Zajaczkowski W.M.: Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity. Ann. Polon. Math 98, 1–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  186. M. Pierre, Personal communication.

  187. Prüss J., Racke R., Zheng S.: Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl 4(185), 627–648 (2006)

    Article  Google Scholar 

  188. Prüss J., Vergara V., Zacher R.: Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete Cont. Dyn. Systems 26, 625–647 (2010)

    MATH  Google Scholar 

  189. Qian T., Wang X.-P., Sheng P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  190. Racke R., Zheng S.: The Cahn-Hilliard equation with dynamic boundary conditions. Adv. Diff. Eqns 8, 83–110 (2003)

    MathSciNet  MATH  Google Scholar 

  191. Rajagopal A., Fischer P., Kuhl E., Steinmann P.: Natural element analysis of the Cahn-Hilliard phase-field model. Comput. Mech. 46, 471–493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  192. Rougirel A.: Convergence to steady state and attractors for doubly nonlinear equations. J. Math. Anal. Appl 339, 281–294 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  193. Rossi R.: On two classes of generalized viscous Cahn-Hilliard equations. Commun. Pure Appl. Anal 4, 405–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  194. R. Rossi, Global attractor for the weak solutions of a class of viscous Cahn-Hilliard equations, in Dissipative phase transitions, Ser. Adv. Math. Appl. Sci., Vol. 71, World Sci. Publ., Hackensack, NJ, 247–268, 2006.

  195. Rybka P., Hoffmann K.-H.: Convergence of solutions to Cahn-Hilliard equation. Commun. Partial Diff. Eqns 24, 1055–1077 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  196. Savaré G., Visintin A.: Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl 8, 49–89 (1997)

    MathSciNet  MATH  Google Scholar 

  197. Schimperna G.: Weak solution to a phase-field transmission problem in a concentrated capacity. Math. Methods Appl. Sci 22, 1235–1254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  198. Schimperna G.: Global attractor for Cahn-Hilliard equations with nonconstant mobility. Nonlinearity 20, 2365–2387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  199. G. Schimperna and S. Zelik, Existence of solutions and separation from singularities for a class of fourth order degenerate parabolic equations, submitted.

  200. Shen J., Yang X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Cont. Dyn. Systems 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  201. Shen J., Yang X.: Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chinese Ann. Math., Ser. B 31, 743–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  202. Shen W., Zheng S.: On the coupled Cahn-Hilliard equations. Commun. Partial Diff. Eqns 18, 701–727 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  203. Stogner R.H., Carey G.F., Murray B.T.: Approximation of Cahn-Hilliard diffuse interface models using parallel adaptative mesh refinement and coarsening with C1 elements. Int. J. Numer. Methods Engrg 76, 636–661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  204. Temam R.: Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, Vol 68. Springer-Verlag, New York (1997)

    Google Scholar 

  205. Thiele U., Knobloch E.: Thin liquid films on a slightly inclined heated plate. Physica D 190, 213–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  206. Tremaine S.: On the origin of irregular structure in Saturn’s rings. Astron. J. 125, 894–901 (2003)

    Article  Google Scholar 

  207. Watson S.J., Otto F., Rubinstein B., Davis S.H.: Coarsening dynamics of the convective Cahn-Hilliard equation. Physica D 178, 127–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  208. Wells G.N., KuhlE. Garikipati K.: A discontinuous Galerkin method for Cahn-Hilliard equation. J. Comput. Phys 218, 860–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  209. Wise S., Kim J. Lowengrub J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys 226, 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  210. Wu H., Zheng S.: Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions. J. Diff. Eqns 204, 511–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  211. Xia Y., Xu Y., Shu C.-W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys 5, 821–835 (2009)

    MathSciNet  Google Scholar 

  212. J. Yin and C. Liu, Cahn-Hilliard type equations with concentration dependent mobility, in Mathematical methods and models in phase transitions, A. Miranville ed., Nova Sci.Publ., New York, 79–93, 2005

  213. Yue P., Feng J.J., Liu C., Shen J.: A diffuse-interface method for simulating twophase flows of complex fluids. J. Fluid Mech 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  214. Zhang T., Wang Q.: Cahn-Hilliard vs singular Cahn-Hilliard equations in phase field modeling. Commun. Comput. Phys. 7, 362–382 (2010)

    MathSciNet  Google Scholar 

  215. Zhao L.-Y., Wu H., Huang H.-Y.: Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids. Commun. Math. Sci 7, 939–962 (2009)

    MathSciNet  MATH  Google Scholar 

  216. Zheng S.: Asymptotic behavior of solution to the Cahn-Hilliard equation. Appl. Anal 23, 165–184 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  217. Zhou J.X., Li M.E.: Solving phase field equations with a meshless method. Commun. Numer. Methods Engrg 22, 1109–1115 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Miranville.

Additional information

Lecture held by A. Miranville in the Seminario Matematico e Fisico di Milano on November 29, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherfils, L., Miranville, A. & Zelik, S. The Cahn-Hilliard Equation with Logarithmic Potentials. Milan J. Math. 79, 561–596 (2011). https://doi.org/10.1007/s00032-011-0165-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-011-0165-4

Mathematics Subject Classification (2010)

Keywords

Navigation