Skip to main content
Log in

\({{\varvec{A}}}_{\varvec{\infty }}\)-algebras associated with elliptic curves and Eisenstein–Kronecker series

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We compute the \(A_{\infty }\)-structure on the self-\({\text {Ext}}\) algebra of the vector bundle G over an elliptic curve of the form \(G=\bigoplus _{i=1}^r P_i\oplus \bigoplus _{j=1}^s L_j\), where \((P_i)\) and \((L_j)\) are line bundles of degrees 0 and 1, respectively. The answer is given in terms of Eisenstein–Kronecker numbers \((e^*_{a,b}(z,w))\). The \(A_\infty \)-constraints lead to quadratic polynomial identities between these numbers, allowing to express them in terms of few ones. Another byproduct of the calculation is the new representation for \(e^*_{a,b}(z,w)\) by rapidly converging series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai, K., Kobayashi, S.: Algebraic theta functions and the p-adic interpolation of Eisenstein–Kronecker numbers. Duke Math. J. 153(2), 229–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colmez, P., Schneps, L.: \(p\)-adic interpolation of special values of Hecke L-functions. Compos. Math. 82, 143–187 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Fukaya, K.: Cyclic symmetry and adic convergence in Lagrangian Floer theory. Kyoto J. Math. 50, 521–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Keller, B.: Introduction to \(A\)-infinity algebras and modules. Homol. Homotopy Appl. 3(1), 1–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibration. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000). World Sci. Publishing, River Edge, NJ, pp. 203–263 (2001)

  6. Lekili, Y., Polishchuk, A.: A modular compactification of \({\cal{M}}_{1,n}\) from \(A_\infty \)-structures. J. Reine Angew. Math. (to appear). arXiv:1408.0611

  7. Merkulov, S.: Strong homotopy algebras of a Kähler manifold. IMRN 3, 153–164 (1999)

    Article  MATH  Google Scholar 

  8. Polishchuk, A.: Homological mirror symmetry with higher products. In: Proceedings of the Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds. AMS and International Press, pp. 247–259 (2001)

  9. Polishchuk, A.: Rapidly converging series for the Weierstrass zeta-function and for the Kronecker function. Math. Res. Lett. 7, 493–502 (2000)

    Article  MathSciNet  Google Scholar 

  10. Polishchuk, A.: Classical Yang–Baxter equation and the \(A_{\infty }\)-constraint. Adv. Math. 168, 56–95 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Polishchuk, A.: \(A_\infty \)-algebra of an elliptic curve and Eisenstein series. Commun. Math. Phys. 301, 709–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Polishchuk, A.: Moduli of curves as moduli of \(A_\infty \)-structures. Duke Math. J. (to appear). arXiv:1312.4636

  13. Tu, J.: Homological mirror symmetry and Fourier–Mukai transform. IMRN 3, 579–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tu, J.: On the reconstruction problem in mirror symmetry. Adv. Math. 256, 449–478 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weil, A.: Elliptic Functions According to Eisenstein and Kronecker. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Polishchuk.

Additional information

Supported in part by the NSF Grant DMS-1400390 and by the Russian Academic Excellence Project ‘5-100’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polishchuk, A. \({{\varvec{A}}}_{\varvec{\infty }}\)-algebras associated with elliptic curves and Eisenstein–Kronecker series. Sel. Math. New Ser. 24, 563–589 (2018). https://doi.org/10.1007/s00029-017-0369-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0369-8

Mathematics Subject Classification

Navigation