Skip to main content
Log in

On the \(\mathrm {L}^p\)-theory for second-order elliptic operators in divergence form with complex coefficients

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Given a complex, elliptic coefficient function we investigate for which values of p the corresponding second-order divergence form operator, complemented with Dirichlet, Neumann or mixed boundary conditions, generates a strongly continuous semigroup on \(\mathrm {L}^p(\Omega )\). Additional properties like analyticity of the semigroup, \(\mathrm {H}^\infty \)-calculus and maximal regularity are also discussed. Finally, we prove a perturbation result for real coefficients that gives the whole range of p’s for small imaginary parts of the coefficients. Our results are based on the recent notion of p-ellipticity, reverse Hölder inequalities and Gaussian estimates for the real coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arendt and A. F. M. ter Elst: Gaussian estimates for second order elliptic operators with boundary conditions. J. Operator Theory 38 (1997), 87–130.

    MathSciNet  MATH  Google Scholar 

  2. K. Astala, D. Faraco, and L. Székelyhidi Jr.: Convex integration and the \(L^p\) theory of elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 1, 1–50.

  3. P. Auscher: Regularity theorems and heat kernels for elliptic operators. J. London Math. Soc. (2) 54 (1996), 284–296.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Auscher: On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \({\mathbb{R}}^n\) and related estimates. Mem. Amer. Math. Soc. 186 (2007), no. 871.

  5. P. Auscher, N. Badr, R. Haller-Dintelmann, and J. Rehberg: The square root problem for second-order, divergence form operators with mixed boundary conditions on \(L^p\). J. Evol. Equ. 15 (2015), no. 1, 165–208.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Auscher, L. Barthélemy, Ph. Bénilan, and E. M. Ouhabaz: Absence de la \(L^\infty \)-contractivité pour les semi-groupes associés aux opérateurs elliptiques complexes sous forme divergence. Potential Anal. 12 (2000), no. 2, 169–189.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Auscher, T. Coulhon, and Ph. Tchamitchian: Absence de principe du maximum pour certaines équations paraboliques complexes. Colloq. Math. 71 (1996), no. 1, 87–95.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bechtel and M. Egert: Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets. J. Fourier Anal. Appl. 25 (2019), no. 5, 2733–2781.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Blunck and P. C. Kunstmann: Calderón-Zygmund theory for non-integral operators and the \(H^{\infty }\) functional calculus. Rev. Mat. Iberoamericana 19 (2003), no. 3, 919–942.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Carbonaro and O. Dragičević: Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients. J. Eur. Math. Soc. (JEMS) 22 (2020), no. 10, 3175–3221.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Cialdea and V. G. Maz’ya: Criterion for the \(L^p\)-dissipativity of second order differential operators with complex coefficients. J. Math. Pures Appl. (9) 84 (2005), no. 8, 1067–1100.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Cialdea and V. G. Maz’ya: Criteria for the \(L^p\)-dissipativity of systems of second order differential equations. Ric. Mat. 55 (2006), no. 2, 233–265.

    MathSciNet  MATH  Google Scholar 

  13. A. Cialdea and V. G. Maz’ya: \(L^p\)-dissipativity of the Lamé operator. Mem. Differ. Equ. Math. Phys. 60 (2013), 111–133.

    MathSciNet  MATH  Google Scholar 

  14. A. Cialdea and V. G. Maz’ya: Semi-bounded differential operators, contractive semigroups and beyond. Vol. 243 of Operator Theory: Advances and Applications. Birkhäuser/Springer, Cham, 2014.

    Book  MATH  Google Scholar 

  15. T. Coulhon and X. T. Duong: Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss. Adv. Differential Equations 5 (2000), no. 1–3, 343–368.

    MathSciNet  MATH  Google Scholar 

  16. M. G. Cowling: Harmonic analysis on semigroups. Ann. of Math. (2) 117 (1983), no. 2, 267–283.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. B. Davies: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132 (1995), no. 1, 141–169.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. B. Davies: Limits on \(L^p\) regularity of self-adjoint elliptic operators. J. Differential Equations 135 (1997), no. 1, 83–102.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Denk, M. Hieber, and J. Prüss: \(\cal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166 (2003), no. 788.

  20. M. Dindoš and J. Pipher: Regularity theory for solutions to second order elliptic operators with complex coefficients and the \(L^p\) Dirichlet problem. Adv. Math. 341 (2019), 255–298.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Disser, A. F. M. ter Elst, and J. Rehberg: On maximal parabolic regularity for non-autonomous parabolic operators. J. Differential Equations 262 (2017), no. 3, 2039–2072.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Disser, H.-C. Kaiser and J. Rehberg: Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems. SIAM J. Math. Anal. 47 (2015), no. 3, 1719–1746.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Dore and A. Venni: On the closedness of the sum of two closed operators, Math. Z. 196 (1987), no. 2, 189 – 201.

    Article  MathSciNet  MATH  Google Scholar 

  24. X. T. Duong and D. W. Robinson: Semigroup kernels, Poisson bounds, and holomorphic functional calculus. J. Funct. Anal. 142 (1996), no. 1, 89–128.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Egert: \(L^p\) estimates for the square root of elliptic systems with mixed boundary conditions. J. Differential Equations 265 (2018), no. 4, 1279–1323.

    Article  MathSciNet  Google Scholar 

  26. M. Egert: On \(p\)-elliptic divergence form operators and holomorphic semigroups. J. Evol. Equ. 20 (2020), no. 3, 705–724.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. F. M. ter Elst, V. Liskevich, Z. Sobol, and H. Vogt: On the \(L^p\)-theory of \(C_0\)-semigroups associated with second-order elliptic operators with complex singular coefficients. Proc. Lond. Math. Soc. (3) 115 (2017), no. 4, 693–724.

    MathSciNet  MATH  Google Scholar 

  28. A. F. M. ter Elst and J. Rehberg: \(L^\infty \)-estimates for divergence operators on bad domains. Anal. Appl. (Singap.) 10 (2012), No. 2, 207–214.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. F. M. ter Elst and J. Rehberg: Hölder estimates for second-order operators on domains with rough boundary. Adv. Differential Equations 20 (2015), no. 3–4, 299–360.

    MathSciNet  MATH  Google Scholar 

  30. S. Fackler: The Kalton–Lancien theorem revisited: maximal regularity does not extrapolate. J. Funct. Anal. 266 (2012), 121–138.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies. Vol. 105 of , Princeton University Press, Princeton, NJ, 1983.

    MATH  Google Scholar 

  32. M. Giaquinta and L. Martinazzi: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Scuola Normale Superiore di Pisa (Nuova Serie), Edizioni della Normale, Pisa, 2012.

  33. D. Gilbarg and N. S. Trudinger: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001.

    Book  MATH  Google Scholar 

  34. J. A. Griepentrog, H.-C. Kaiser, and J. Rehberg: Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on \(L^p\). Adv. Math. Sci. Appl. 11 (2001), no. 1, 87–112.

    MathSciNet  MATH  Google Scholar 

  35. M. Haase: The functional calculus for sectorial operators. Vol. 169 of Operator Theory: Advances and Application. Birkhäuser Verlag, Basel, 2006.

    Book  MATH  Google Scholar 

  36. R. Haller-Dintelmann and J. Rehberg: Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differential Equations 247 (2009), no. 5, 1354–1396.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Haller-Dintelmann and J. Rehberg: Maximal parabolic regularity for divergence operators on distribution spaces. In J. Escher et al. (eds.): Parabolic Problems, The Herbert Amann Festschrift. Progress in Nonlinear Differential Equations and their Applications. Vol. 80 of . Birkhäuser, Basel, 2011, pp. 313–342.

    MATH  Google Scholar 

  38. M. Hieber and J. Prüss: Heat kernels and maximal \(L^p\) -\(L^q\) estimates for parabolic evolution equations. Comm. Partial Differential Equations 22 (1997), no. 9-10, 1647–1669.

    MathSciNet  MATH  Google Scholar 

  39. S. Hofmann, S. Mayboroda, and A. McIntosh: Second order elliptic operators with complex bounded measurable coefficients in \(L^p\), Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 5, 723–800.

    Article  MathSciNet  MATH  Google Scholar 

  40. N. J. Kalton and L. Weis: The \(H^{\infty }\)-calculus and sums of closed operators. Math. Ann. 321 (2001), no. 2, 319–345.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. C. Kunstmann and L. Weis: Maximal \(L^p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. In: M. Iannelli et al. (eds.): Functional analytic methods for evolution equations. Lecture Notes in Mathematics Vol. 1855 of , Springer, Berlin, 2004, pp. 65–311.

    Chapter  MATH  Google Scholar 

  42. D. Lamberton: Équations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces \(L^p\). J. Funct. Anal. 72 (1987), no. 2, 252–262.

    Article  MathSciNet  MATH  Google Scholar 

  43. V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskij: Absence of De Giorgi-type theorems for strongly elliptic equations with complex coefficients. J. Soviet Math. 28 (1985), no. 5, 726–734.

    Article  MATH  Google Scholar 

  44. N. G. Meyers: An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189–206.

    MathSciNet  MATH  Google Scholar 

  45. R. Nittka: Projections onto convex sets and \(L^p\)-quasi-contractivity of semigroups. Arch. Math. 98 (2012), 341–353.

    Article  MathSciNet  MATH  Google Scholar 

  46. E. M. Ouhabaz: \(L^\infty \)-contractivity of semigroups generated by sectorial forms. J. London Math. Soc. 46 (1992), 529–542.

    Article  MathSciNet  MATH  Google Scholar 

  47. E. M. Ouhabaz: Analysis of heat equations on domains. London Mathematical Society Monographs Series. Vol. 31 of , Princeton University Press, Princeton, 2005.

    Google Scholar 

  48. S. Selberherr: Analysis and simulation of semiconductor devices. Springer, Wien, 1984.

    Book  Google Scholar 

  49. Z. Shen: Bounds of Riesz transforms on \(L^p\) spaces for second order elliptic operators. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 173–197.

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Tolksdorf: \(\cal{R}\)-sectoriality of higher-order elliptic systems on general bounded domains. J. Evol. Equ. 18 (2018), no. 2, 323–349.

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Weis: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319 (2001), 735–758.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referee for the suggestions and additional references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. M. ter Elst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of this work is supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. P. Tolksdorf was partially supported by the project ANR INFAMIE (ANR-15-CE40-0011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ter Elst, A.F.M., Haller-Dintelmann, R., Rehberg, J. et al. On the \(\mathrm {L}^p\)-theory for second-order elliptic operators in divergence form with complex coefficients. J. Evol. Equ. 21, 3963–4003 (2021). https://doi.org/10.1007/s00028-021-00711-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00711-4

Keywords

Mathematics Subject Classification

Navigation