Skip to main content
Log in

Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study functions of bounded variation with values in a Banach or in a metric space. In finite dimensions, there are three well-known topologies; we argue that in infinite dimensions there is a natural fourth topology. We provide some insight into the structure of these four topologies. In particular, we study the meaning of convergence, duality and regularity for these topologies and provide some useful compactness criteria, also related to the classical Aubin–Lions theorem. After this we study the Borel \(\sigma \)-algebras induced by these topologies, and we provide some results about probability measures on the space of functions of bounded variation, which can be used to study stochastic processes of bounded variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio. Metric space valued functions of bounded variation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, \(4^e\) série, 17(3):439–478, 1990.

  2. L. Ambrosio and S. Di Marino. Equivalent definitions of BV space and of total variation on metric measure spaces. Journal of Functional Analysis, 266(7):4150–4188, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, NY, USA, 2006.

    MATH  Google Scholar 

  4. L. Ambrosio and R. Ghezzi. Sobolev and bounded variation functions on metric measure spaces (lecture notes). http://cvgmt.sns.it/paper/2738/, 2016.

  5. L. Ambrosio, R. Ghezzi, and V. Magnani. BV functions and sets of finite perimeter in sub-Riemannian manifolds. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, 32(3):489–517, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Birkhauser, Basel, Switzerland, 2nd edition, 2008.

    MATH  Google Scholar 

  7. L. Bertini, A. Faggionato, and D. Gabrielli. Large deviations of the empirical flow for continuous time markov chains. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques, 51(3):867–900, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. I. Bogachev. Measure theory. Vol. I & II. Springer-Verlag, Berlin, Germany, 2007.

  9. H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  10. D. Chiron. On the definitions of Sobolev and BV spaces into singular spaces and the trace problem. Communications in Contemporary Mathematics, 9(4):473, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. V. Chistyakov. Selections of bounded variation. Journal of Applied Analysis, 10(1):1–82, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.B. Conway. A course in functional analysis. Springer, New York, NY, USA, 2nd edition, 2007.

    Book  Google Scholar 

  13. S. Di Marino. Sobolev and BV spaces on metric measure spaces via derivations and integration by parts. http://cvgmt.sns.it/paper/2521, 2014.

  14. J. Diestel and J. J. Jr. Uhl. Vector Measures, volume 95. American Mathematical Society, Providence, RI, 1967.

  15. N. Dinculeanu. Vector Measures. Pergamon press / Deutscher Verlag der Wissenschaften, Berlin, Germany, 1967.

    MATH  Google Scholar 

  16. N. Dunford and J.T. Schwartz. Linear operators, part one: general theory. Interscience, New York, NY, USA, 1957.

    Google Scholar 

  17. L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, USA, 1992.

    MATH  Google Scholar 

  18. H. Federer. Geometric measure theory. Springer, Berlin, Germany, 1969.

    MATH  Google Scholar 

  19. A. Jakubowski. A non-Skorokhod topology on the Skorokhod space. Electronic Journal of Probability, 2(4):1–21, 1997.

    MathSciNet  MATH  Google Scholar 

  20. P. Krejčí. Regulated evolution quasivariational inequalities. Notes to Lectures held at the University of Pavia, 2003.

  21. P. Krejčí. The Kurzweil integral and hysteresis. In Journal of Physics: Conference Series, volume 55, page 144. IOP Publishing, 2006.

  22. P. Logaritsch and E. Spadaro. A representation formula for the p-energy of metric space-valued Sobolev maps. Communications in Contemporary Mathematics, 14(6):1250043, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  23. T.-W. Ma. Banach-Hilbert Spaces, Vector Measures and Group Representations. World Scientific, Singapore, 2002.

    Google Scholar 

  24. A. Mainik and A. Mielke. Existence results for energetic models for rate-independent systems. Calculus of Variations and Partial Differential Equations, 22(1):73–99, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  25. P.A. Meyer and W.A. Zheng. Tightness criteria for laws of semimartingales. Annales de l’I.H.P., section B, 20(4):353–372, 1984.

    MathSciNet  MATH  Google Scholar 

  26. A. Mielke and T. Roubicek. Rate-Independent Systems. Springer, Berlin, Germany, 2015.

    Book  MATH  Google Scholar 

  27. A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate-independent phase transformations using an extremum principle. Archive for Rational Mechanics and Analysis, 162(2):137–177, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. J. Moreau, P. D. Panagiotopoulos, and G. Strang. Topics in nonsmooth mechanics. Birkhäuser, Basel, Switzerland, 1988.

    Book  MATH  Google Scholar 

  29. R. I. A. Patterson and D. R. M. Renger. Large deviations of reaction fluxes. arXiv:1802.02512, 2018.

  30. V. Recupero. BV solutions of rate independent variational inequalities. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze-Serie V, 10(2):269, 2011.

    MathSciNet  MATH  Google Scholar 

  31. V. Recupero. Hysteresis operators in metric spaces. Discrete Contin. Dyn. Syst. Ser. S, 8:773–792, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Rudin. Functional Analysis. McGraw-Hill, New York, NY, 1973.

    MATH  Google Scholar 

  33. J. Simon. Compact sets in the space \(L^p(0,T;B)\). Annali di Matematica pura ed applicata, 146(1):65–96, 1986.

    Article  Google Scholar 

  34. A. Visintin. Differential models of hysteresis. Springer Science & Business Media, Berlin, Germany, 2013.

    MATH  Google Scholar 

  35. A. Wiweger. Linear spaces with mixed topology. Studia Mathematica, 20(1):47–68, 1961.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been funded by Deutsche Forschungsgemeinschaft (DFG) through Grant CRC 1114 “Scaling Cascades in Complex Systems”, Projects C08 “Stochastic Spatial Coagulation Particle Processes” and C05 “Effective Models for Materials and Interfaces with Multiple Scales”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Michiel Renger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heida, M., Patterson, R.I.A. & Renger, D.R.M. Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space. J. Evol. Equ. 19, 111–152 (2019). https://doi.org/10.1007/s00028-018-0471-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0471-1

Navigation