Skip to main content

Advertisement

Log in

Warming, and the presence of a dominant shredder, drive variation in decomposer communities in a mountain stream

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We assessed the effects of rising temperature and presence of a dominant detritivore (Allogamus laureatus; Trichoptera, Limnephilidae) on the decomposition of submerged oak litter (Quercus robur L.) and associated detritivore and fungal communities in a mountain stream in central Portugal. It was divided longitudinally, with one half maintained at ambient temperature (mean = 12.4 °C) while the other was warmed ~3 °C above ambient temperature. Oak leaves in litter bags were incubated in both stream halves, with half of the bags containing one A. laureatus larva. Replicate bags were collected over 6 weeks to determine litter mass remaining and the detritivore and fungal communities. A. laureatus stimulated decomposition of oak litter and colonization by other shredders at ambient temperature. It also increased fungal biomass at increased temperature, and changed the community of fungi. Higher temperature inhibited A. laureatus activity, resulting in a substantial change in the strength of interactions within both fungal and detritivore assemblages, with important consequences for leaf litter decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams MV, Mangel M, Hedges K (2007) Predator-prey interactions and changing environments: who benefits? Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 362:2095–2104

    Article  Google Scholar 

  • American Public Health Association (APHA) (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37

    Article  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Beisner EB, McCauley E, Wrona FJ (1997) The influence of temperature and food chain length on plankton predator––prey dynamics. Can J Fish Aquat Sci 54:586–595

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, Geoffrey BW (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Canhoto C, de Lima JLMP, Traça de Almeida A (2013) Warming up a stream reach: design of a hydraulic and heating system. Limnol Oceanogr: Methods 11:410–417

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci 100:12219–12222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Creed RP, Cherry RP, Pflaum JR, Wood CJ (2009) Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos 118:723–732

    Article  Google Scholar 

  • Dang CK, Schindler M, Chauvet E, Gessner MO (2009) Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90:122–131

    Article  PubMed  Google Scholar 

  • Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41:1109–1115

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 30:881–884

    Article  Google Scholar 

  • Ferreira V, Canhoto C (2014) Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquat Sci 76:155–163

    Article  CAS  Google Scholar 

  • Ferreira V, Chauvet E (2011a) Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167:279–291

    Article  PubMed  Google Scholar 

  • Ferreira V, Chauvet E (2011b) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Change Biol 17:551–564

    Article  Google Scholar 

  • Ferreira V, Encalada AC, Graça MAS (2012) Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw Sci 31:945–962

    Article  Google Scholar 

  • Friberg N, Dybkjær JB, Olafsson JS, Gislason GM, Larsen SE, Lauridsen TL (2009) Relationships between structure and function in streams contrasting in temperature. Freshw Biol 54:2051–2068

    Article  CAS  Google Scholar 

  • Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331

    Article  PubMed  Google Scholar 

  • Gotthard K (2000) Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J Anim Ecol 69:896–902

    Article  Google Scholar 

  • Graça MAS, Canhoto C (2006) Leaf litter processing in low order streams. Limnetica 25:1–10

    Google Scholar 

  • Graça MAS, Bärlocher F, Gessner MO (2005) Methods to study litter decomposition: a practical guide. Springer, The Netherlands

    Book  Google Scholar 

  • Gulis V, Ferreira V, Graça MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–1669

    Article  CAS  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev Camb Philos Soc 84:39–54

    Article  PubMed  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria, to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Article  Google Scholar 

  • Hogg ID, Williams DD (1996) Response of stream invertebrates to a Global-Warming thermal regime: an ecosystem-level manipulation. Ecology 77:395–407

    Article  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1–32

  • Jacobsen D, Schultz R, Encalada AC (1997) Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshw Biol 38:247–261

    Article  Google Scholar 

  • Jonsson M, Malmqvist B (2003) Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134:554–559

    Article  PubMed  Google Scholar 

  • Miranda P, Coelho FES, Tomé AR, Valente MA (2002) 20th century Portuguese climate and climate scenarios. In: Santos FD, Forbes K, Moita R (eds) Climate change in Portugal. Scenarios, impacts and adaptation measures. SIAM project. Gradiva Publications, Lisbon, pp 23–83

  • Montoya JM, Raffaelli D (2010) Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 365:2013–2018

    Article  Google Scholar 

  • Mouritsen KN, Tompkins DM, Poulin R (2005) Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146:476–483

    Article  PubMed  Google Scholar 

  • Nilsson LM, Otto C (1977) Effects of population density and of presence of Gammarus pulex L. (Amphipoda) on the growth larvae of Potamophylax cingulatus Steph. (Trichoptera). Hydrobiologia 54:109–112

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Perkins DM, Reiss J, Yvon-Durocher G, Woodward G (2010) Global change and food webs in running waters. Hydrobiologia 657:181–198

    Article  Google Scholar 

  • Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Article  CAS  Google Scholar 

  • Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshw Biol 4:343–368

    Article  Google Scholar 

  • Raven JA (2003) Global change––contemporary concerns. Encyclopedia of Life Sciences

  • Roy BA, Gusewell S, Harte J (2004) Response of plant pathogens and herbivores to a warming experiment. Ecology 85:2570–2581

    Article  Google Scholar 

  • Rumbos CI, Stamopoulos D, Georgoulas G, Nikolopoulou E (2010) Factors affecting leaf litter decomposition by Micropterna sequax (Trichoptera: limnephilidae). Int Rev Hydrobiol 95:383–394

    Article  CAS  Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479

    Article  PubMed  Google Scholar 

  • Stenseth N, Mysterud A (2002) Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. PNAS 99:13379–13381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strahler A (1957) Quantitative analysis of watershed geomorphology. Trans, Am Geophys Union 38:913–920

    Article  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2002) Invertébrés d’eau douce. Systématique, biologie, écologie. CNRS Editions, Paris

  • Taniguchi Y, Nakano S (2000) Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology 81:2027–2039

    Article  Google Scholar 

  • Traill LW, Lim MLM, Sodhi NS, Bradshaw CJA (2010) Mechanisms driving change: altered species interactions and ecosystem function through global warming. J Anim Ecol 79:937–947

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Vieira-Lanero R (2000) Las Larvas de los Tricopteros de Galicia. PhD thesis, Universidad de Santiago de Compostela

  • Walther G-R (2010) Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 365:2019–2024

    Article  Google Scholar 

  • Wiens JJ (2012) The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 366:2336–2350

    Article  Google Scholar 

  • Wissinger SA, Sparks GB, Rouse GL, Brown WS, Steltzer H (1996) Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands. Ecology 77:2421–2430

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modeling. Biol Rev 88:15–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 365: 2093–2016

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank Cristina Docal for the ion chromatography analyses, and Ana Lírio and João Rosa for valuable help in the field. We also thank the Company Amado and Amado Lda., Coimbra, Portugal, for the help in the construction of the heating tanks and setup of the system in the stream and the Municipality of Lousã, Portugal, for their support and help in the setup of the hydraulic infrastructures and warming facilities. We gratefully acknowledge Prof. Brian Moss and two anonymous reviewers for their comments and suggestions on an earlier version of the manuscript. This study was supported by the European Regional Development Fund (ERDF) through the COMPETE––Operational Factors of Competitiveness Program (POFC-COMPETE) and national funds through FCT––Foundation for Science and Technology, under the project “Predicting the effect of global warming on stream ecosystems” (FCT Ref: PTDC/CLI/67180/2006; COMPETE Ref: FCOMP-01-0124-FEDER-007112). Financial support granted by the FCT to VF (references SFRH/BPD/34368/2006 and SFRH/BPD/76482/2011, program POPH/FSE) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cátia Domingos.

Appendices

Appendix 1

Taxa recorded in the study area during the experimental period, and their characterization into functional feeding groups (FFG). For Coleoptera, A indicates adult individuals and L indicates larvae.

Higher level

Species

FFG

Order trichoptera

Allogamus laureatus

Shredder

Catagapetus

Grazer

Diplectrona felix

Collector

F. Ecnomidae

Predator

Glossosoma

Grazer

Goera pilosa

Grazer

Helicopsyche helicifex

Grazer

Hydropsyche ambigua

Collector

Lepidostoma hirtum

Shredder

F. Lepidostomatidae

Shredder

Plectronemia laetabilis

Predator

F. Polycentropodinae

Predator

Polycentropus

Predator

Polycentropus corniger

Predator

Rhyacophila lusitanica

Predator

Sericostoma

Shredder

F. Sericostomatidae

Shredder (Generally)

Order ephemeroptera

Acentrella sinaica

Grazer

Baetis

Grazer

Centroptilum

Grazer

Ecdyonurus

Grazer

Ephemerella

Shredder/grazer

Habroleptoides

Grazer

Habrophlebia

Shredder

Order plecoptera

Capnia

Shredder

Chloroperla

Shredder

Isoperla

Shredder

Leuctridae

Shredder

Nemoura

Shredder

F. Nemouridae

Shredders/collectors

Protonemura

Shredder

Order coleoptera

Chyphon (L)

Grazer

Coelambus (A)

Shredder/piercer

Coelostoma (A)

No information

Copelatus (A)

Shredder

Elmis (L)

Grazer

Elodes (L)

Grazer

Helophorus

Shredder

Hydraena (A)

Grazer

Macroplea (A)

Shredder

Microcara (L)

Grazer

Noterus (A)

Shredder/predator

Octhebius (A)

Grazer

Oulimnius (A)

Grazer

Platambus (L)

Shredder/piercer

Odonata

Condulegaster

Predator

Calopterix

Predator

Order diptera

Atherix

Piercer

Tr. Chironomini

Collector

sF. Clinocerinae

Predator

Dixa

Collector

Athichopogon

No information

sF. Hemerodromiinae

Predator

sF. Orthocladinae

Grazer

Tr. Prosimuliini

Collector

F. Rhagionidae

No information

Tr Simuliini

Collector

sF. Tanypodinae

Predator

Tr. Tanytarsini

Collector

Tipula

Shredder

Class gastropoda

Ancylus fluviatilis

Grazer

Bythynella

Grazer

Class hirudinea

Erpobdella octoculata

Collector

Acari

 

Parasite

Turbellaria

Polycelis nigra and P. tenuis

Predator

Class oligochaeta

F. Naididae

Collector

F. Tubificidae

Collector

Appendix 2

Taxa recorded in the study area during the experimental period.

Fungal species

Alatospora acuminata

Alatospora pulchella

Anguillospora furtiva

Anguillospora filiformis

Articulospora tetracladia

Clavariopsis aquatica

Clavatospora longibrachiata

Culicidospora aquatica

Flagellospora curvula

Heliscus lugdunensis

Lemonniera terrestris

Lunulospora curvula

Margaritispora aquatica/Goniopila monticola

Tetrachaetum elegans

Tricladium chaetocladium

Tricladium splendens

Triscelophorus acuminatus

Triscelophorus monosporus

Unidentified tetraradiate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, C., Ferreira, V., Canhoto, C. et al. Warming, and the presence of a dominant shredder, drive variation in decomposer communities in a mountain stream. Aquat Sci 77, 129–140 (2015). https://doi.org/10.1007/s00027-014-0378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0378-z

Keywords

Navigation