Skip to main content
Log in

Export and degassing of terrestrial carbon through watercourses draining a temperate podzolized catchment

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L−1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L−1) and the relatively constant δ13C-POC value (near −28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L−1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L−1). The δ13C-DIC value around −20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year−1 or 6 t C km−2 year−1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abril G, Etcheber H, Borges AV, Frankignoulle M (2000) Excess atmospheric carbon dioxide transported by rivers into the Scheldt Estuary. Comptes Rendus de l’Académie des Sciences, Série IIA 330:761–768

    CAS  Google Scholar 

  • Abril G, Nogueira M, Etcheber H, Cabeçadas G, Lemaire E, Brogueira MJ (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262

    Article  CAS  Google Scholar 

  • Ågren A, Jansson M, Ivarsson H, Bishop K, Seibert J (2007) Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden. Aquat Sci 70:21–29

    Article  Google Scholar 

  • Aitkenhead JA, McDowell WH (2000) Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Glob Biogeochem Cycles 14:127–138

    Article  CAS  Google Scholar 

  • Aitkenhead JA, Hope D, Billett MF (1999) The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrol Process 13:1289–1302

    Article  Google Scholar 

  • Alvarez-Cobelas M, Angeler DG, Sánchez-Carrillo S, Almendros G (2012) A worldwide view of organic carbon export from catchments. Biogeochem 107:275–293

    Article  CAS  Google Scholar 

  • Amiotte-Suchet P, Aubert D, Probst JL, Gauthier-Lafaye F, Probst A, Andreux F, Viville D (1999) δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the strengbach case study Vosges mountains, France. Chem Geol 159:129–145

    Article  CAS  Google Scholar 

  • Atekwana EA, Krishnamurthy RV (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface water: application of a modified gas evolution technique. J Hydrol 205:265–278

    Article  CAS  Google Scholar 

  • Auby I, Labourg PJ (1996) Seasonal dynamics of Zostera noltii Hornem in Bay of Arcachon France. J Sea Res 35:269–277

    Article  Google Scholar 

  • Auby I, Manaud F, Maurer D, Trut G (1994) Etude de la prolifération des algues vertes dans le bassin d’Arcachon. Rapport IFREMER-CEMAGREF-SSA-SABARC, pp 1–163

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60. doi:10.1890/100014

    Article  Google Scholar 

  • Barth JAC, Cronin AA, Dunlop J, Kalin RM (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River N Ireland. Chem Geol 200:203–216

    Article  CAS  Google Scholar 

  • Bianchi TS, Filley T, Dria K, Hatcher PG (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi river. Geochim Cosmochim Acta 5:959–967

    Article  Google Scholar 

  • Billett MF, Moore TR (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Proc 22:2044–2054

    Article  CAS  Google Scholar 

  • Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes. Global Biogeo Cycles 18:10–24. doi:10.1029/2003gb002058

    Google Scholar 

  • Billett MF, Deacon CM, Palmer SM, Dawson JJC, Hope D (2006) Connecting organic carbon in stream water and soils in a peatland catchment. J Geophys Res 111:1–13

    Article  Google Scholar 

  • Bordovskiy OK (1965) Accumulation and transformation of organic substance in marine sediments. Mar Geol 3:5–114

    Article  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842

    Article  CAS  Google Scholar 

  • Canton M, Anschutz P, Naudet V, Molnar N, Mouret A, Francecshi M, Naessens F, Poirier D (2010) Impact of a solid waste disposal on nutrient dynamics in a sandy catchment. J Cont Hydrol 116:1–15

    Article  CAS  Google Scholar 

  • Canton M, Anschutz P, Coynel A, Polsenaere P, Auby I, Poirier D (2012) Nutrient export to an Eastern Atlantic coastal zone: first modeling and nitrogen mass balance. Biogeochem 107:361–377

    Article  CAS  Google Scholar 

  • Castelle AJ, Galloway JN (1990) Carbon dioxide dynamics in acid forest soils in Shenandoah national park, Virginia. Soil Sci Soc Am J 54:252–257

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshwat Res 52:101–110

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  PubMed  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, Mcdowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middleburg J, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Dang C, Sauriau PG, Savoye N, Caill-Milly N et al (2009) Determination of diet in Manila clams by spatial analysis of stable isotopes. Mar Ecol Prog Ser 387:167–177

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochem 70:71–92

    Article  CAS  Google Scholar 

  • De Wit R, Leibreich J, Vernier F, Delmas F, Beuffe H, Maison Ph, Chossat JC, Laplace-Treyture C, Laplana R, Clavé V, Torre M, Auby I, Trut G, Maurer D, Capdeville P (2005) Relationship between land-use in the agro-forestry system of les Landes, nitrogen loading to and risk of macro-algal blooming in the bassin d’Arcachon coastal lagoon sw France. Estuar Coast Shelf Sci 62:453–465

    Article  Google Scholar 

  • Dubois S, Savoye N, Grémare A, Plus M, Charlier K, Beltoise A, Blanchet H (2011) Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: an elemental and isotopic study at the ecosystem space scale. J Mar Syst. doi:10.1016/j.jmarsys.2011.10.009

    Google Scholar 

  • Etcheber H, Taillez A, Abril G, Garnier J, Servais P, Moatar F, Commarieu MV (2007) Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiol 588:245–259

    Article  CAS  Google Scholar 

  • Finlay JC (2003) Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochem 62:231–252

    Article  CAS  Google Scholar 

  • Folliot M, Pujol C, Cahuzac B, Alvinerie J (1993) Nouvelles données sur le Miocène moyen marin de Gironde-Approche des paléoenvironnements. Ciencias da Terra Lisboa 12:117–131

    Google Scholar 

  • Frankignoulle M, Abril G, Borges AV, Bourge I, Canon C, Delille B, Libert E, Théate JM (1998) Carbon dioxide emission from European estuaries. Science 282:434–436

    Article  PubMed  CAS  Google Scholar 

  • Frankignoulle M, Borges AV, Biondo R (2001) A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Res 35:344–1347

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  CAS  Google Scholar 

  • Genereux DP, Hemond HF (1992) Determination of gas-exchange rate constants for a small stream on Walker Branch watershed, Tennessee. Water Res Res 28:2365–2374

    Article  CAS  Google Scholar 

  • Gillikin DP, Bouillon S (2007) Determination of δ18O of water and δ13C of dissolved inorganic carbon using a simple modification of an elemental analyzer—isotope ratio mass spectrometer EA-IRMS: an evaluation. Rapid Commun Mass Spectrom 21:1475–1478

    Article  PubMed  CAS  Google Scholar 

  • Glé C, Amo YD, Sautour B, Laborde P, Chardy P (2008) Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem Arcachon Bay, France. Estuar Coast Shelf Sci 76:642–656

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  • Greenwood JL, Lowe RL (2006) The effects of pH on a periphyton community in an acid wetland, USA. Hydrobiologia 561:71–82

    Article  CAS  Google Scholar 

  • Hope D, Billet MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84:301–324

    Article  PubMed  CAS  Google Scholar 

  • Hope D, Billett MF, Cresser MC (1997) Exports of organic carbon in two river systems in NE Scotland. J Hydrol 193:61–82

    Article  CAS  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 4:847–857

    Article  Google Scholar 

  • Hynes HBN (1983) Groundwater and stream limnology. Hydrobiol 100:93–99

    Article  Google Scholar 

  • Jarosz N, Brunet Y, Lamaud E, Irvine M, Bonnefond JM, Loustau D (2008) Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability. Agr Forest Meteorol 148:1508–1523

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey E, Ometto JPHB, Guimarães Couto E (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401. doi:10.1029/2008GL034619

    Article  Google Scholar 

  • Jolivet C, Augusto L, Trichet P, Arrouays D (2007) Les sols du massif forestier des Landes de Gascogne: formation, histoire, propriétés et variabilité spatiale. Revue Forestière Française 1:7–30

    Google Scholar 

  • Jones JB, Mulholland PJ (1998) Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment ecosystem respiration. Ecosystems 1:183–196

    Article  CAS  Google Scholar 

  • Jones JB Jr, Stanley EH, Mulholland PJ (2003) Long-term decline in carbon dioxide supersaturation in rivers across contiguous United States. Geophys Res Lett 30:1495. doi:10.1029/2003GL017056

    Article  Google Scholar 

  • Kawasaki M (2002) Study on the dissolved organic carbon dynamics in the forested catchments in Japanese. MS Thesis, Kyoto University, Kyoto

  • Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and CH4 from lakes and rivers in arctic. Alaska Hydrobiol 240:23–36

    Google Scholar 

  • Legigan P (1979) L’élaboration de la formation du Sable des Landes, dépot résiduel de l’environnement sédimentaire pliocène-pléistocène centre aquitain. In. Université de Bordeaux, Bordeaux, p 429

    Google Scholar 

  • Lundström US, Van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94:91–107

    Article  Google Scholar 

  • Mantoura RFC, Woodward EMS (1983) Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim Cosmochim Acta 47:1293–1309

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Meybeck M (1982) River transport of organic carbon to the ocean. Am J Sci 282:401–450

    Article  CAS  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  CAS  Google Scholar 

  • Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70:443–463

    Article  CAS  Google Scholar 

  • Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52:173–220

    Article  Google Scholar 

  • Miyajima T, Yamada Y, Hanba YT, Yoshii K, Koitabashi T, Wada E (1995) Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnol Oceanogr 40:994–1000

    Article  Google Scholar 

  • Mook WG, Tan FC (1991) Stable carbon isotopes in rivers and estuaries. In: Degens E, Kempe S, Richey J (eds) Biogeochemistry of major world rivers. Wiley, New York, pp 245–264

  • Mulholland PJ (2003) Large-scale patterns in dissolved organic carbon concentration, flux, and sources. In: Findlay S, Sinsabaugh RL (eds) Aquatic ecosystems-interactivity of dissolved organic matter. Academic Press, New York, pp 139–160

  • Neal C, Hill S (1994) Dissolved inorganic and organic carbon in moorland and forest streams: Plynlimon, mid-Wales. J Hydrol 153:231–243

    Article  CAS  Google Scholar 

  • Neal C, Hilton J, Wade AJ, Neal M, Wickman H (2006) Chlorophyll-a in the rivers of eastern England. Sci Tot Environ 365:84–104

    Article  CAS  Google Scholar 

  • Okazaki R (2001) Study on the export of organic carbon from a forested catchment in Japanese. MS Thesis Kyoto University Kyoto

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert M, Bade DL, Kritzberg ES, Bastviken D (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243

    Article  PubMed  CAS  Google Scholar 

  • Polsenaere P, Abril G (2012) Modelling CO2 degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data. Geochim Cosmochim Acta 91:220–239

    Article  CAS  Google Scholar 

  • Polsenaere P, Lamaud E, Lafon V, Bonnefond JM, Bretel P, Delille B, Deborde J, Loustau D, Abril G (2012) Spatial and temporal CO2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production. Biogeosciences 9:249–268

    Article  CAS  Google Scholar 

  • Probst JL (1985) Nitrogen and phosphorous exportation in the Garonne basin France. J Hydrol 76:281–305

    Article  CAS  Google Scholar 

  • Rantakari M, Mattsson T, Kortelainen P, Piirainen S, Finér L, Ahtianen M (2010) Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Sci Tot Environ 408:1649–1658

    Article  CAS  Google Scholar 

  • Rimmelin P, Dumon JC, Maneux E, Gonçalves A (1998) Study of annual and seasonal dissolved inorganic nitrogen inputs into the Arcachon lagoon, Atlantic coast France. Estuar Co Shelf Sci 47:649–659

    Article  CAS  Google Scholar 

  • Savoye N, Aminot A, Tréguer P, Fontugne M, Naulet N, Kerouel R (2003) Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem Bay of Seine, France. Mar Ecol Prog Ser 255:27–41

    Article  CAS  Google Scholar 

  • Schindler JE, Krabbenhoft D (1998) The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43:157–174

    Article  CAS  Google Scholar 

  • Sharp JH (1993) The dissolved organic carbon controversy: an update. Oceanography 6:45–50

    Article  Google Scholar 

  • Sobek S, Tranvik LJ, Cole JJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Glob Biogeochem Cycle 19:GB200.3. doi:10.1029/2004GB002264

  • Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: an analysis of 7500 widely distributed lakes. Limnol Oceanogr 52:1208–1219

    Article  CAS  Google Scholar 

  • Tranvik LJ, Jansson M (2002) Terrestrial export of organic carbon. Nature 415:861–862

    Article  CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundström US (2005) The carbon we do not see-the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils. Soil Biol Biochem 37:1–13

    Article  Google Scholar 

  • Vestin JLK, Norström SH, Bylund D, Lundström US (2008) Soil solution and stream water chemistry in a forested catchment II: influence of organic matter. Geoderma 144:271–278

    Article  CAS  Google Scholar 

  • Vogel JC (1993) Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 29–46

  • Worrall F, Guilbert T, Besien T (2007) The flux of carbon rivers: the case for flux from England and Wales. Biogeochemistry 86:63–75

    Article  CAS  Google Scholar 

  • Yang C, Telmer K, Veizer J (1996) Chemical dynamics of the ‘St. Lawrance’ riverine system: δH2O, δ18OH2O, δ13CDIC, δ34SSulfate, and Dissolved 87Sr/86Sr. Geochim Cosmochim Acta 60:851–866

    Article  CAS  Google Scholar 

  • Yentsch CM, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to Aurélia Mouret, Jonathan Deborde and Romain Chassagne who contributed to field sampling. This paper is a contribution to the PNEC (Programme National Environnement Côtier)-Littoral Atlantique and ANR PROTIDAL (Agence Nationale de la Recherche « Processus biogéochimiques transitoires de la zone intertidale ») projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Polsenaere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polsenaere, P., Savoye, N., Etcheber, H. et al. Export and degassing of terrestrial carbon through watercourses draining a temperate podzolized catchment. Aquat Sci 75, 299–319 (2013). https://doi.org/10.1007/s00027-012-0275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-012-0275-2

Keywords

Navigation