Skip to main content

Advertisement

Log in

Preconditioning effects of intermittent stream flow on leaf litter decomposition

  • Recent Perspectives on Temporary River Ecology
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Autumnal input of leaf litter is a pivotal energy source in most headwater streams. In temporary streams, however, water stress may lead to a seasonal shift in leaf abscission. Leaves accumulate at the surface of the dry streambed or in residual pools and are subject to physicochemical preconditioning before decomposition starts after flow recovery. In this study, we experimentally tested the effect of photodegradation on sunlit streambeds and anaerobic fermentation in anoxic pools on leaf decomposition during the subsequent flowing phase. To mimic field preconditioning, we exposed Populus tremula leaves to UV–VIS irradiation and wet-anoxic conditions in the laboratory. Subsequently, we quantified leaf mass loss of preconditioned leaves and the associated decomposer community in five low-order temporary streams using coarse and fine mesh litter bags. On average, mass loss after approximately 45 days was 4 and 7% lower when leaves were preconditioned by irradiation and anoxic conditions, respectively. We found a lower chemical quality and lower ergosterol content (a proxy for living fungal biomass) in leaves from the anoxic preconditioning, but no effects on macroinvertebrate assemblages were detected for any preconditioning treatment. Overall, results from this study suggest a reduced processing efficiency of organic matter in temporary streams due to preconditioning during intermittence of flow leading to reduced substrate quality and repressed decomposer activity. These preconditioning effects may become more relevant in the future given the expected worldwide increase in the geographical extent of intermittent flow as a consequence of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acuña V, Giorgi A, Munoz I, Sabater F, Sabater S (2007) Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. J N Am Benthol Soc 26:54–69

    Article  Google Scholar 

  • Albrectsen BR, Bjorken L, Varad A, Hagner A, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves-diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Article  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  PubMed  CAS  Google Scholar 

  • Bärlocher F (2005) Leaf mass loss estimated by litter bag technique. In: Graça M, Bärlocher F, Gessner M (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 37–42

    Chapter  Google Scholar 

  • Bärlocher F, Graça M (2005) Total phenolics. In: Graça M, Bärlocher F, Gessner M (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 97–100

    Chapter  Google Scholar 

  • Battle J, Golladay S (2001) Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. Am Midl Nat 146:128–145

    Article  Google Scholar 

  • Benfield EF (2006) Decomposition of leaf material. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology, 2nd edn. Elsevier, Academic Press, San Diego, pp 711–720

    Google Scholar 

  • Boulton A, Boon P (1991) A review of methodology used to measure leaf litter decomposition in lotic environments—time to turn over an old leaf. Aust J Mar Fresh Res 42:1–43

    Article  CAS  Google Scholar 

  • Boulton A, Lake PS (1990) The ecology of 2 intermittent streams in Victoria, Australia.1. Multivariate analyses of physicochemical features. Freshw Biol 24:123–141

    Article  CAS  Google Scholar 

  • Boulton A, Lake PS (1992) Benthic organic-matter and detritivorous macroinvertebrates in two intermittent streams in South-Eastern Australia. Hydrobiologia 241:107–118

    Article  CAS  Google Scholar 

  • Canhoto C, Laranjeira C (2007) Leachates of Eucalyptus globulus in intermittent streams affect water parameters and invertebrates. Int Rev Hydrobiol 92:173–182

    Article  CAS  Google Scholar 

  • Casas J, Gessner MO (1999) Leaf litter breakdown in a Mediterranean stream characterized by travertine precipitation. Freshw Biol 41:781–793

    Article  Google Scholar 

  • Dangles O, Gessner M, Guerold F, Chauvet E (2004) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378

    Article  CAS  Google Scholar 

  • Datry T, Corti R, Claret C, Philippe M (2011) Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the ‘‘drying memory’’. Aquat Sci. doi:10.1007/s00027-011-0193-8

  • Day TA, Zhang ET, Ruhland CT (2007) Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the Sonoran Desert. Plant Ecol 193:185–194

    Article  Google Scholar 

  • Dudgeon D, Wu KKY (1999) Leaf litter in a tropical stream: food or substrate for macroinvertebrates? Arch Hydrobiol 146:65–82

    Google Scholar 

  • Fischer H, Mille-Lindblom C, Zwirnmann E, Tranvik L (2006) Contribution of fungi and bacteria to the formation of dissolved organic carbon from decaying common reed (Phragmites australis). Arch Hydrobiol 166:79–97

    Article  CAS  Google Scholar 

  • Gessner MO (2005a) Ergosterol as a measure of fungal biomass. In: Graça M, Bärlocher F, Gessner M (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 189–195

    Chapter  Google Scholar 

  • Gessner MO (2005b) Proximate lignin and cellulose. In: Graça M, Bärlocher F, Gessner M (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 115–120

    Chapter  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal J (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Clim Dynam 23:839–858

    Article  Google Scholar 

  • Glazebrook H, Robertson A (1999) The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Aust J Ecol 24:625–635

    Article  Google Scholar 

  • Graça M (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393

    Article  Google Scholar 

  • Henry HAL, Brizgys K, Field CB (2008) Litter decomposition in a California annual grassland: Interactions between photodegradation and litter layer thickness. Ecosystems 11:545–554

    Article  CAS  Google Scholar 

  • Hladyz S, Gessner MO, Giller PS, Pozo J, Woodward G (2009) Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshw Biol 54:957–970

    Article  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp Graph Stat 5:299–314

    Article  Google Scholar 

  • Küsel K, Drake H (1996) Anaerobic capacities of leaf litter. Appl Environ Microb 62:4216–4219

    Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172

    Article  Google Scholar 

  • Langhans S, Tockner K (2006) The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501–509

    Article  PubMed  Google Scholar 

  • Langhans SD, Tiegs SD, Gessner MO, Tockner K (2008) Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquat Sci 70:337–346

    Article  Google Scholar 

  • Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738

    Article  Google Scholar 

  • Leopold AC, Musgrave ME, Williams KM (1981) Solute leakage resulting from leaf desiccation. Plant Physiol 68:1222–1225

    Article  PubMed  CAS  Google Scholar 

  • Leroy C, Marks J (2006) Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw Biol 51:605–617

    Article  Google Scholar 

  • Maamri A, Chergui H, Pattee E (1997) Leaf litter processing in a temporary northeastern Moroccan river. Arch Hydrobiol 140:513–531

    Google Scholar 

  • Reith F, Drake HL, Küsel K (2002) Anaerobic activities of bacteria and fungi in moderately acidic conifer and deciduous leaf litter. FEMS Microbiol Ecol 41:27–35

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS (1992) Food, microhabitat, or both? Macroinvertebrate use of leaf accumulations in a montane stream. Freshw Biol 27:169–176

    Article  Google Scholar 

  • Royer T, Minshall G (2001) Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshw Biol 46:603–610

    Article  CAS  Google Scholar 

  • Salmanowicz B, Nylund J (1988) High-performance liquid-chromatography determination of ergosterol as a measure of ectomycorrhiza infection in Scots Pine. Eur J For Pathol 18:291–298

    Article  CAS  Google Scholar 

  • Schlief J, Mutz M (2007) Response of aquatic leaf associated microbial communities to elevated leachate DOC: a microcosm study. Int Rev Hydrobiol 92:146–155

    Article  CAS  Google Scholar 

  • Schmidt-Kloiber A, Graf W, Lorenz A, Moog O (2006) The AQEM/STAR taxa list—a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566:325–342

    Article  Google Scholar 

  • Stanley E, Fisher S, Grimm N (1997) Ecosystem expansion and contraction in streams. Bioscience 47:427–435

    Article  Google Scholar 

  • Tockner K, Uehlinger U, Robinson CT, Tonolla D, Siber R, Peter FD (2009) European rivers. In: Likens GE (ed) Encyclopedia of inland waters, 1st edn. Elsevier, Academic Press, Oxford, pp 366–377

    Chapter  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CW (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Von Schiller D, Acuña V, Graeber D, Martí E, Ribot M, Sabater S, Timoner X, Tockner K (2011) Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquat Sci. doi:10.1007/s00027-011-0195-6

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594

    Article  Google Scholar 

  • Williams DD (2006) The biology of temporary waters. Oxford University Press, New York

    Google Scholar 

  • Yoshimura C, Gessner MO, Tockner K, Furumai H (2008) Chemical properties, microbial respiration, and decomposition of coarse and fine particulate organic matter. J N Am Benthol Soc 27:664–673

    Article  Google Scholar 

  • Young J (1995) Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty-acids. J Agr Food Chem 43:2904–2910

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful for the major support by the staff of all chemical laboratories involved, and we particularly thank Angela Krüger of the Institute for Freshwater Ecology and Inland Fisheries in Berlin for the analysis of ergosterol. We are grateful for the comments of T. Datry and three reviewers that helped to improve the manuscript. This study was funded by the EU-FP 7 project MIRAGE (FP7-ENV-2007-1, http://www.mirage-project.eu). We also acknowledge funding from the Spanish Ministry of Science and Innovation (Warmtemp project, CGL2008-05618-C02-01/BOS) for the experiments at the Fuirosos site. D. von Schiller was supported by a fellowship of the German Academic Exchange Service (DAAD) and the “laCaixa” Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dieter.

Additional information

This article belongs to the Special Issue “Recent Perspectives on Temporary River Ecology”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 20.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieter, D., von Schiller, D., García-Roger, E.M. et al. Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquat Sci 73, 599–609 (2011). https://doi.org/10.1007/s00027-011-0231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-011-0231-6

Keywords

Navigation