Skip to main content
Log in

Fluctuation Dynamics of Radon in Groundwater Prior to the Gansu Earthquake, China (22 July 2013: Ms = 6.6): Investigation with DFA and MFDFA Methods

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The present study reports measurements of radon in groundwater conducted in China between January and December 2013. During the measurement period, a great Ms = 6.6 earthquake occurred in Gansu Province, China. The paper analyses data derived from three nearby stations via monofractal and multifractal detrended fluctuations analysis and explores whether pre-earthquake fractal and long-memory trends exist in the time series. Several critical epochs with characteristic pre-seismic long-lasting fractal patterns are identified in segmented parts of the series. In the whole data series, the fluctuation function, scaling exponent and generalised Hurst exponent depend on the fractal scales, which indicates multifractality. The multifractal spectrum of the raw, shuffled and truncated series showed a significant increase in the degree of fluctuation that can be explained as a pre-earthquake indicator attributable to the Gansu earthquake due to its very large magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified from Zheng et al., 2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alam, A., Wang, N., Zhao, G., & Barkat, A. (2020). Implication of radon monitoring for earthquake surveillance using statistical techniques: A case study of Wenchuan earthquake. Geofluids, 2020, 1–14.

    Google Scholar 

  • Alam, A., Wang, N., Zhao, G., Mehmood, T., & Nikolopoulos, D. (2019). Long-lasting patterns of radon in groundwater at Panzhihua, China: Results from DFA, fractal dimensions and residual radon concentration. Geochemical Journal, 53(6), 341–358.

    Google Scholar 

  • Ashkenazy, Y., Havlin, S., Ivanov, P. C., Peng, C.-K., Schulte-Frohlinde, V., & Stanley, H. E. (2003). Magnitude and sign scaling in power-law correlated time series. Physica A: Statistical Mechanics and Its Applications, 323, 19–41.

    Google Scholar 

  • Barkat, A., Ali, A., Hayat, U., Crowley, Q. G., Rehman, K., Siddique, N., & Iqbal, T. (2018). Time series analysis of soil radon in Northern Pakistan: Implications for earthquake forecasting. Applied Geochemistry, 97, 197–208.

    Google Scholar 

  • Barkat, A., Ali, A., Siddique, N., Alam, A., Wasim, M., & Iqbal, T. (2017). Radon as an earthquake precursor in and around northern Pakistan: A case study. Geochemical Journal, 51(4), 337–346.

    Google Scholar 

  • Barman, C., Chaudhuri, H., Ghose, D., Deb, A., & Sinha, B. (2014). Multifractal detrended fluctuation analysis of seismic induced radon-222 time series. Journal of Earthquake Science and Engineering, 1, 59–79.

    Google Scholar 

  • Buldyrev, S. V., Goldberger, A. L., Havlin, S., Mantegna, R. N., Matsa, M. E., Peng, C.-K., & Stanley, H. E. (1995). Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Physical Review E, 51(5), 5084.

    Google Scholar 

  • Cantzos, D., Nikolopoulos, D., Petraki, E., Nomicos, C., Yannakopoulos, P. H., & Kottou, S. (2015). Identifying long-memory trends in pre-seismic MHz disturbances through support vector machines. Journal of Earth Science and Climatic Change, 6(263), 1–9.

    Google Scholar 

  • Chakraborty, B., Vardhan, Y. V., Haris, K., Menezes, A., Karisiddaiah, S. M., Fernandes, W. A., & Kurian, J. (2016). Multifractal detrended fluctuation analysis to compare Coral Bank and Seafloor Seepage Area-related characterization along the Central Western Continental Margin of India. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2016.2595628

    Article  Google Scholar 

  • Chaudhuri, H., Bari, W., Iqbal, N., Bhandari, R. K., Ghose, D., Sen, P., & Sinha, B. (2011). Long range gas-geochemical anomalies of a remote earthquake recorded simultaneously at distant monitoring stations in India. Geochemical Journal, 45(2), 137–156.

    Google Scholar 

  • Chen, Z. (2001). Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, 65, 1–14.

    Google Scholar 

  • Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics, 476(3–4), 371–396. https://doi.org/10.1016/j.tecto.2009.06.008

    Article  Google Scholar 

  • D’Incecco, S., Di Carlo, P., Aruffo, E., Chatzisavvas, N., Petraki, E., Priniotakis, G., Nikolopoulos, D., et al. (2020). Fractal dimension analysis applied to soil CO2 fluxes in Campotosto’s Seismic Area, Central Italy. Geosciences, 10(6), 233.

    Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics117(5), 1025–1044.

    Google Scholar 

  • Feder, J. (1988). Fractals. Plenum Press.

    Google Scholar 

  • Friedmann, H. (2012). Radon in earthquake prediction research. Radiation Protection Dosimetry149(2), 177–184.

    Google Scholar 

  • Ghosh, D., Deb, A., Dutta, S., Sengupta, R., & Samanta, S. (2012). Multifractality of radon concentration fluctuation in earthquake related signal. Fractals, 20(01), 33–39.

    Google Scholar 

  • Gregorič, A., Zmazek, B., & Vaupotič, J. (2008). Radon concentration in thermal water as an indicator of seismic activity. Collegium Antropologicum, 32(2), 95–98.

    Google Scholar 

  • Haider, T., Barkat, A., Hayat, U., Ali, A., Awais, M., Alam, A., & Shah, M. A. (2021). Identification of radon anomalies induced by earthquake activity using intelligent systems. Journal of Geochemical Exploration, 222, 106709.

    Google Scholar 

  • Hamdache, M., Henares, J., Peláez, J. A., & Damerdji, Y. (2019). Fractal analysis of earthquake sequences in the Ibero-Maghrebian region. Pure and Applied Geophysics176(4), 1397–1416.

    Google Scholar 

  • Hauksson, E., Goddard, J. G., & Pálsson, S. E. (1978). Radon precursor studies in Iceland. Eos, 59(12), 1196.

    Google Scholar 

  • Hayakawa, M., & Hobara, Y. (2010). Current status of seismo-electromagnetics for short-term earthquake prediction. Geomatics, Natural Hazards and Risk1(2), 115–155.

    Google Scholar 

  • Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., & Stanley, H. E. (2001). Effect of trends on detrended fluctuation analysis. Physical Review E, 64(1), 11114.

    Google Scholar 

  • Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770–799.

    Google Scholar 

  • Hurst, H. E, Black, R. P., & Simaika, Y. M. (1965). Long-term storage: An experimental study Constable. London, UK.

  • Igarashi, G., & Wakita, H. (1990). Groundwater radon anomalies associated with earthquakes. Tectonophysics, 180(2–4), 237–254.

    Google Scholar 

  • Ihlen, E. A. F. E. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in Physiology, 3, 141.

    Google Scholar 

  • Immè, G., & Morelli, D. (2012). Radon as earthquake precursor. Dipartimento Di Fisica e Astronomia Università Di Catania-INFN Sezione Di Catania, pp. 143–160.

  • Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum, M. G., Struzik, Z. R., & Stanley, H. E. (1999). Multifractality in human heartbeat dynamics. Nature. https://doi.org/10.1038/20924

    Article  Google Scholar 

  • Ivanova, K., & Ausloos, M. (1999). Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking. Physica A: Statistical Mechanics and Its Applications, 274(1–2), 349–354.

    Google Scholar 

  • Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica a: Statistical Mechanics and Its Applications, 316(1–4), 87–114.

    Google Scholar 

  • Khan, P. A., Tripathi, S. C., Mansoori, A. A., Bhawre, P., Purohit, P. K., & Gwal, A. K. (2011). Scientific efforts in the direction of successful Earthquake Prediction. International Journal of Geomatics and Geosciences1(4), 669–677.

  • King, C. Y. (1980). Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes. Journal of Geophysical Research: Solid Earth85(B6), 3065–3078.

    Google Scholar 

  • Koscielny-Bunde, E., Bunde, A., Havlin, S., Roman, H. E., Goldreich, Y., & Schellnhuber, H. J. (1998). Indication of a universal persistence law governing atmospheric variability. Physical Review Letters81(3), 729.

    Google Scholar 

  • Liu, N., Yu, Y., He, J., & Zhao, S. (2013). Integrated modeling of urban-scale pollutant transport: Application in a semi-arid urban valley, Northwestern China. Atmospheric Pollution Research, 4(3), 306–314.

    Google Scholar 

  • Lu, W.-Z., & Xue, Y. (2014). Detrended fluctuation analysis of particle number concentrations on roadsides in Hong Kong. Building and Environment, 82, 580–587.

    Google Scholar 

  • Moustris, K. P., Petraki, E., Ntourou, K., Priniotakis, G., & Nikolopoulos, D. (2020). Spatiotemporal evaluation of PM10 concentrations within the Greater Athens Area, Greece. Trends, variability and analysis of a 19 years data series. Environments, 7(10), 85.

    Google Scholar 

  • Nazaroff, W. W., & Nero, A. V. (1988). Radon and its decay products in indoor air.

  • Nikolopoulos, D., Moustris, K., Petraki, E., Koulougliotis, D., & Cantzos, D. (2019). Fractal and long-memory traces in PM10 time series in Athens, Greece. Environments6(3), 29.

    Google Scholar 

  • Nikolopoulos, D., Matsoukas, C., Yannakopoulos, P. H., Petraki, E., Cantzos, D., & Nomicos, C. (2018). Long-memory and fractal trends in variations of environmental radon in soil: results from measurements in Lesvos Island in Greece. Journal of Earth Science & Climatic Change9, 1–11.

    Google Scholar 

  • Nikolopoulos, D., Petraki, E., Marousaki, A., Potirakis, S. M., Koulouras, G., Nomicos, C., & Louizi, A. (2012). Environmental monitoring of radon in soil during a very seismically active period occurred in South West Greece. Journal of Environmental Monitoring, 14(2), 564–578.

    Google Scholar 

  • Nikolopoulos, D., Petraki, E., Nomicos, C., Koulouras, G., Kottou, S., & Yannakopoulos, P. (2015). Long-memory trends in disturbances of radon in soil prior to the twin ML = 5.1 earthquakes of 17 November 2014 Greece. Journal of Earth Science and Climatic Change, 6(1), 1–10.

    Google Scholar 

  • Nikolopoulos, D., Petraki, E., Vogiannis, E., Chaldeos, Y., Yannakopoulos, P., Kottou, S., et al. (2014). Traces of self-organisation and long-range memory in variations of environmental radon in soil: Comparative results from monitoring in Lesvos Island and Ileia (Greece). Journal of Radioanalytical and Nuclear Chemistry299(1), 203–219.

    Google Scholar 

  • Nikolopoulos, D., Petraki, E., Yannakopoulos, P. H., Priniotakis, G., Voyiatzis, I., & Cantzos, D. (2020). Long-lasting patterns in 3 kHz electromagnetic time series after the ML = 6.6 earthquake of 2018-10-25 near Zakynthos, Greece. Geosciences, 10(6), 235.

    Google Scholar 

  • Nikolopoulos, D., Valais, I., Michail, C., Bakas, A., Fountzoula, C., Cantzos, D., & Yannakopoulos, P. (2016). Radioluminescence properties of the CdSe/ZnS quantum dot nanocrystals with analysis of long-memory trends. Radiation Measurements, 92, 19–31.

    Google Scholar 

  • Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., & Stanley, H. E. (1992). Long-range correlations in nucleotide sequences. Nature, 356(6365), 168–170.

    Google Scholar 

  • Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685.

    Google Scholar 

  • Peng, C. K., Hausdorff, J. M., Havlin, S., Mietus, J. E., Stanley, H. E., & Goldberger, A. L. (1998). Multiple-time scales analysis of physiological time series under neural control. Physica A: Statistical Mechanics and its Applications249(1–4), 491–500.

    Google Scholar 

  • Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5(1), 82–87.

    Google Scholar 

  • Peng, C. K., Mietus, J., Hausdorff, J. M., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Physical Review Letters, 70, 1343–1346.

    Google Scholar 

  • Petraki, E., Nikolopoulos, D., Chaldeos, Y., Koulouras, G., Nomicos, C., Yannakopoulos, P. H., et al. (2016). Fractal evolution of MHz electromagnetic signals prior to earthquakes: results collected in Greece during 2009. Geomatics, Natural Hazards and Risk7(2), 550–564.

  • Petraki, E., Nikolopoulos, D., Fotopoulos, A., Panagiotaras, D., Koulouras, G., Zisos, A., & Stonham, J. (2013a). Self-organised critical features in soil radon and MHz electromagnetic disturbances: Results from environmental monitoring in Greece. Applied Radiation and Isotopes, 72, 39–53.

    Google Scholar 

  • Petraki, E., Nikolopoulos, D., Fotopoulos, A., Panagiotaras, D., Nomicos, C., Yannakopoulos, P., et al. (2013b). Long-range memory patterns in variations of environmental radon in soil. Analytical Methods5(16), 4010–4020.

    Google Scholar 

  • Petraki, E., Nikolopoulos, D., Panagiotaras, D., Cantzos, D., Yannakopoulos, P., Nomicos, C., & Stonham, J. (2015). Radon-222: A potential short-term earthquake precursor. Journal of Earth Science and Climatic Change, 6(6), 1.

    Google Scholar 

  • Ren, H. W., Liu, Y. W., & Yang, D. Y. (2012). A preliminary study of post-seismic effects of radon following the Ms 8.0 Wenchuan earthquake. Radiation Measurements, 47(1), 82–88.

    Google Scholar 

  • Richon, P., Bernard, P., Labed, V., Sabroux, J.-C., Beneïto, A., Lucius, D., & Robe, M.-C. (2007). Results of monitoring 222Rn in soil gas of the Gulf of Corinth region, Greece. Radiation Measurements, 42(1), 87–93.

    Google Scholar 

  • Riggio, A., & Santulin, M. (2015). Earthquake forecasting: a review of radon as seismic precursor. Bollettino Di Geofisica Teorica Ed Applicata, 56(2).

  • Salat, H., Murcio, R., & Arcaute, E. (2017). Multifractal methodology. Physica A: Statistical Mechanics and Its Applications, 473, 467–487.

    Google Scholar 

  • Sarlis, N. V., Skordas, E. S., Varotsos, P. A., Nagao, T., Kamogawa, M., Tanaka, H., & Uyeda, S. (2013). Minimum of the order parameter fluctuations of seismicity before major earthquakes in Japan. Proceedings of the National Academy of Sciences of the United States of America, 110, 13734–13738.

    Google Scholar 

  • Shrivastava, A. (2014). Are pre-seismic ULF electromagnetic emissions considered as a reliable diagnostics for earthquake prediction?. Current Science, 596–600.

  • Skordas, E. S. (2014). On the increase of the “non-uniform” scaling of the magnetic field variations before the Mw 9.0 earthquake in Japan in 2011. Chaos: An Interdisciplinary Journal of Nonlinear Science24(2), 023131.

  • Stanley, H. E. (1995). Power laws and universality. Nature. https://doi.org/10.1038/378554a0

    Article  Google Scholar 

  • Tanna, H. J., & Pathak, K. N. (2014). Multifractality due to long-range correlation in the L-band ionospheric scintillation S4 index time series. Astrophysics and Space Science, 350(1), 47–56.

    Google Scholar 

  • Telesca, L., Lapenna, V., & Macchiato, M. (2004). Mono-and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences. Chaos, Solitons and Fractals, 19(1), 1–15.

    Google Scholar 

  • Telesca, L., Lapenna, V., & Macchiato, M. (2005). Multifractal fluctuations in seismic interspike series. Physica A: Statistical Mechanics and Its Applications, 354, 629–640.

    Google Scholar 

  • Ulomov, V. I. (1971). Forerunners of the Tashkent earthquake. Izvestia Akadamiyi Nauk Uzbeckistan SSR, 188–200.

  • Uyeda, S., Nagao, T., & Kamogawa, M. (2009). Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics, 470(3–4), 205–213.

    Google Scholar 

  • Xu, X., Yeats, R. S., & Yu, G. (2010). Five short historical earthquake surface ruptures near the Silk Road, Gansu Province, China. Bulletin of the Seismological Society of America, 100(2), 541–561.

    Google Scholar 

  • Yasuoka, Y., Igarashi, G., Ishikawa, T., Tokonami, S., & Shinogi, M. (2006). Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Applied Geochemistry, 21(6), 1064–1072.

    Google Scholar 

  • Yurong, Y., & Ziqiang, Z. (1993). Radon measurement in seismological research. Nuclear Tracks and Radiation Measurements, 22(1–4), 499–504.

    Google Scholar 

  • Zheng, S., Wu, L. X., & Qin, K. (2014). Multiple parameters anomalies for verifying the geosystem spheres coupling effect: a case study of the 2010 Ms7. 1 Yushu earthquake in China. Annals of Geophysics57(4), 0434.

Download references

Acknowledgements

The authors wish to acknowledge two anonymous reviewers for the improvement of the manuscript by their constructive remarks. Gratitude is also extended to the Editor-in-Chief for his editorial assistance. The authors would like to thank the China Earthquake Network Centre for providing the radon data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, A., Wang, N., Petraki, E. et al. Fluctuation Dynamics of Radon in Groundwater Prior to the Gansu Earthquake, China (22 July 2013: Ms = 6.6): Investigation with DFA and MFDFA Methods. Pure Appl. Geophys. 178, 3375–3395 (2021). https://doi.org/10.1007/s00024-021-02818-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02818-8

Keywords

Navigation