Skip to main content
Log in

Lake Van (Southeastern Turkey) Experiment: Receiver Function Analyses of Lithospheric Structure from Teleseismic Observations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

A Correction to this article was published on 06 March 2020

This article has been updated

Abstract

The P and S wave receiver functions and their joint inversions are used to study the lithosphere beneath the Lake Van region using approximately 600 teleseismic earthquake data (Mw ≥ 5.8) at different azimuths collected from 10 permanent broadband stations operated by Kandilli Observatory and Earthquake Research Institute and Disaster and Emergency Management Authority in the region. The dataset is taken from the European Integrated Data Archive. The simulated annealing method is used for the joint inversion of P-wave and S-wave receiver functions, since the P410s phase cannot be detected reliably in the depth stacks. This may be due to the low olivine content and high basalt content at this depth. The inversion process is therefore performed without travel time residuals. The crustal thickness is observed at nearly 45 km in all the velocity models obtained from the inversion. The relatively low-velocity layer (Vs = 3.4 km/s) at depths of the middle crust may be associated with volcanic centers near Nemrut, in the west of the region. Additionally, another low-velocity layer (Vs = ~ 3.0 km/s) is observed in the upper crust around the Süphan Volcano. Also, Vp/Vs and Poisson’s ratios are calculated for the study area. Their high values (Vp/Vs ≥ 1.85, and σ ≥ 0.285) correspond to the partial melting of the lower crust in the region. According to velocity models obtained from the inversion results, the most important outcome is that the average variance of the Moho discontinuity (~ 45 km) and lithosphere–asthenosphere boundary (~ 90 km) under the seismograph stations can be interpreted as a likely part of the Arabian oceanic plate in relation to the collision zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 06 March 2020

    The article Lake Van (Southeastern Turkey) Experiment.

References

  • Akın, U. (2016). Investigation of the seismic velocity distribution and crustal structure of Turkey by means of gravity data. Bulletin Mineral Research Experiments, 153, 185–202.

    Google Scholar 

  • Akıncı, A., & Antonioli, A. (2012). Observations and stochastic modeling of strong ground motions for the 2011 October 23 Mw 7.1 Van, Turkey, earthquake. Geophysics Journal of International. https://doi.org/10.1093/gji/ggs075.

    Article  Google Scholar 

  • Akıncı, A., Malagnini, L., Herrmann, B., & Kalafat, D. (2014). High-frequency attenuation in the Lake Van region, Eastern Turkey. Bulletin of the Seismological Society of America, 104(3), 1400–1409.

    Google Scholar 

  • Al-Lazki, A., Sandvol, E., Seber, D., Barazangi, M., Türkelli, N., & Mohamad, R. (2004). Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African Plates. Geophysical Journal International, 158, 1024–1040.

    Google Scholar 

  • Angus, D., Wilson, D., Sandvol, E., & Ni, J. F. (2006). Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophysical Journal International, 166, 1335–1346.

    Google Scholar 

  • Aydan, Ö., Ulusay, R., & Kumsar, H. (2014). Seismic, ground motion and geotechnical characteristics of the 2011 Van-Erciş¸ and Van-Edremit earthquakes of Turkey, and assessment of geotechnical damages. Bulletin of Engineering Geology and the Environment, 73, 643–666.

    Google Scholar 

  • Bakırcı, T., Yoshizawa, K., & Özer, K. M. (2012). Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography. Geophysical Journal International, 190, 1058–1076.

    Google Scholar 

  • Barazangi, M., Sandvol, E., & Seber, D. (2006). Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. Geological Society of America Special Paper, 409, 463–474.

    Google Scholar 

  • Baumgarten, H., Wonik, T., & Kwiecien, O. (2014). Facies characterization based on physical properties from downhole logging for the sediment record of Lake Van, Turkey. Quaternary Science Reviews, 104, 85–96.

    Google Scholar 

  • Bayrak, Y., Yadav, R. B. S., Kalafat, D., Tsapanos, T. M., Çınar, H., Singh, A. P., et al. (2013). Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence. Tectonophysics, 601, 163–176.

    Google Scholar 

  • Bektaş, Ö., Ravat, D., Büyüksaraç, A., Bilim, F., & Ateş, A. (2007). Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics, 164, 975–998.

    Google Scholar 

  • Berkhout, A. J. (1977). Least square inverse filtering and wavelet deconvolution. Geophysics, 42, 1369–1383.

    Google Scholar 

  • Biswas, N. N. (1972). Earth-flattening procedure for the propagation of Rayleigh wave. Pure and Applied Geophysics, 96, 61–74.

    Google Scholar 

  • Bozkurt, E. (2001). Neotectonics of Turkey—A synthesis. Geodinamica Acta, 14, 3–30.

    Google Scholar 

  • Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research, 101(B2), 3139–3156.

    Google Scholar 

  • Çınar, H., & Alkan, H. (2017). Crustal S-wave structure around the Lake Van region (eastern Turkey) from interstation Rayleigh wave phase velocity analyses. Turkish Journal of Earth Science, 26, 73–90.

    Google Scholar 

  • Çırmık, A. (2018). Examining the crustal structures of eastern Anatolia, using thermal gradient, heat flow, radiogenic heat production and seismic velocities (Vp and Vs) derived from Curie point depth. Bollettino di Geofi sica Teorica ed Applicata, 59(2), 117–134.

    Google Scholar 

  • Cukur, D., Krastel, S., Tomonaga, Y., Schmincke, H. U., Sumita, M., Meydan, A. F., et al. (2017). Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications. International Journal of Earth Sciences, 106, 239–253.

    Google Scholar 

  • Degens, E. T., Wong, H. K., & Kempe, S. (1984). A geological Study of Lake Van, Eastern Turkey. Geologische Rundschau, 73, 701–734.

    Google Scholar 

  • Delph, J., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015a). Shear wave velocity structure of the Anatolian Plate: Anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202, 261–276.

    Google Scholar 

  • Delph, J., Zandt, G., & Beck, S. L. (2015b). A new approach to obtaining a 3D shear wave velocity model of the crust and upper mantle: an application to eastern Turkey. Tectonophysics, 665, 92–100.

    Google Scholar 

  • Elliott, J. R., Copley, A. C., Holley, R., Scharer, K., & Parsons, B. (2013). The 2011 Mw 7.1 Van (Eastern Turkey) earthquake. Journal of Geophysics Research Solid Earth, 118, 1–19.

    Google Scholar 

  • Farra, V., & Vinnik, L. (2000). Upper mantle stratification by P and S receiver functions. Geophysical Journal International, 141, 699–712.

    Google Scholar 

  • Gans, C. R., Beck, S. L., Zandt, G., Biryol, C. B., & Ozacar, A. A. (2009). Detecting the limit of slab break-off in central Turkey: new high-resolution Pn tomography results. Geophysical Journal International, 179, 1566–1572.

    Google Scholar 

  • Gök, R., Mellors, R. J., Sandvol, E., Pasyanos, M., Hauk, T., Takedatsu, R., et al. (2011). Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region. Journal of Geophysical Research, 116, B05303.

    Google Scholar 

  • Gök, R., Pasyanos, M. E., & Zor, E. (2007). Lithospheric structure of the continent-continent collision zone: eastern Turkey. Geophysical Journal International, 169, 1079–1088.

    Google Scholar 

  • Görgün, E. (2013). Analysis of the b-values before and after the 23 October 2011 Mw 7.2 Van-Erciş, Turkey earthquake. Tectonophysics, 603, 213–221.

    Google Scholar 

  • Görür, N., Çagatay, M. N., Zabcı, C., Sakinç, M., Akkök, R., Şile, H., et al. (2015). The Late Quaternary tectono-stratigraphic evolution of the Lake Van, Turkey. Bulletin Mineral Research Experiments, 151, 1–46.

    Google Scholar 

  • Govers, R., & Fichtner, A. (2016). Signature of slab fragmentation beneath Anatolia from full-waveform tomography. Earth and Planetary Science Letters, 450, 10–19.

    Google Scholar 

  • Gürbüz, A., & Gürer, O. F. (2008). Tectonic geomorphology of the north Anatolian Fault zone in the Lake Sapanca Basin (eastern Marmara Region, Turkey). Geosciences Journal, 12(3), 215–225.

    Google Scholar 

  • Haskell, N. A. (1962). Crustal reflection of plane P and SV waves. Journal of Geophysical Research, 67, 4751–4767.

    Google Scholar 

  • Irmak, T. S., Doğan, B., & Karakaş, A. (2012). Source mechanism of the 23 October 2011, Van (Turkey) earthquake (Mw = 7.1) and aftershocks with its tectonic implications. Earth Planets Space, 64, 991–1003.

    Google Scholar 

  • Işık, S. E., Konca, A. Ö., & Karabulut, H. (2017). The seismic interactions and spatiotemporal evolution of seismicity following the October 23, 2011 Mw 7.1 Van, Eastern Anatolia, earthquake. Tectonophysics, 702, 8–18.

    Google Scholar 

  • Kennett, B. L. N., & Engdahl, E. R. (1991). Travel times for global earthquake location and phase identification. Geophysical Journal International, 105, 429–465.

    Google Scholar 

  • Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subduction–accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30, 9-1–9-4.

    Google Scholar 

  • Keskin, M. (2007). Eastern Anatolia: A hotspot in a collision zone without a mantle plume. Geological Society of America Special Paper, 430, 693–722.

    Google Scholar 

  • Kind, R. (1985). The reflectivity method for different source and receiver structures and comparison with GRF data. Journal of Geophysics, 58, 146–152.

    Google Scholar 

  • Kind, R., Eken, T., Tilmann, F., Sodoudi, F., Taymaz, T., Bulut, F., et al. (2015). Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions. Solid Earth, 6, 971–984.

    Google Scholar 

  • Kind, R., Yuan, X., & Kumar, P. (2012). Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 536–537, 25–43.

    Google Scholar 

  • Kiselev, S., Vinnik, L., Oreshin, S., Gupta, S., Rai, S. S., Singh, A., et al. (2008). Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophysics Journal International, 173, 1106–1118.

    Google Scholar 

  • Koçyiğit, A. (2013). New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey. Journal of Asian Earth Sciences, 62, 586–605.

    Google Scholar 

  • Koçyiğit, A., Yılmaz, A., Adamia, S., & Kuloshvili, S. (2001). Neotectonic of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14, 177–195.

    Google Scholar 

  • Konca, A. O. (2015). Rupture process of 2011 Mw 7.1 Van, Eastern Turkey earthquake from joint inversion of strong-motion, high-rate GPS, teleseismic, and GPS data. Journal of Seismology, 19, 969–988.

    Google Scholar 

  • Kosarev, G. L., Oreshin, S. I., Vinnik, L. P., Kiselev, S. G., Dattatrayam, R. S., Suresh, G., et al. (2013). Heterogeneous lithosphere and the underlying mantle of the Indian sub-continent. Tectonophysics, 592, 175–186.

    Google Scholar 

  • Kosarev, G., Oreshin, S., Vinnik, L., & Makeyeva, L. (2018). Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes. Tectonophysics, 723, 172–177.

    Google Scholar 

  • Lahn, E. (1948). Türkiye Göllerinin Jeolojisi ve Jeomorfolojisi Hakkında Bir Etüt (p. 87). Ankara: MTA press.

    Google Scholar 

  • Lei, J., & Zhao, D. (2007). Teleseismic evidence for a break-off subducting slab under Eastern Turkey. Earth and Planetary Science Letters, 257, 14–28.

    Google Scholar 

  • Litt, T., Krastel, S., Sturm, M., Kipfer, R., Orcen, S., Heumann, G., et al. (2009). ‘PALEOVAN’, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quaternary Science Reviews, 28, 1555–1567.

    Google Scholar 

  • Lü, Y. S., Ni, L., & Chen, Q. F. (2017). Pn tomography with Moho depth correction from eastern Europe to western China. Journal of Geophysical Research: Solid Earth, 122, 1284–1301.

    Google Scholar 

  • Mackenzie, D., Elliott, J. R., Altunel, E., Walker, R. T., Kurban, Y. C., Schwenninger, J. L., et al. (2016). Seismotectonics and rupture process of the Mw 7.1 2011 Van reverse-faulting earthquake, eastern Turkey, and implications for hazard in regions of distributed shortening. Geophysical Journal International, 206, 501–524.

    Google Scholar 

  • Mahatsente, R., Önal, G., & Çemen, I. (2018). Lithospheric structure and the isostatic state of Eastern Anatolia: Insight from gravity data modelling. Lithosphere, 10(2), 279–290.

    Google Scholar 

  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., et al. (2000). GPS constraints on plate motions and deformation in the Eastern Mediterranean: implications for plate dynamics. Journal of Geophysical Research, 105, 5695–5719.

    Google Scholar 

  • Metropolis, N., Rosenbluth, M. N., Rosenbluth, A. W., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1097–1098.

    Google Scholar 

  • Morais, I. (2012). Structure of the crust and mantle beneath Iberia and western Mediterranean from P and S receiver functions and SKS waveforms. Ph.D. Thesis, Universidade de Lisboa, Faculdade de Ciencias, Portugal.

  • Morais, I., Vinnik, L., Silveira, G., Kiselev, S., & Matias, L. (2015). Mantle beneath the Gibraltar Arc from receiver functions. Geophysical Journal International, 200, 1153–1169.

    Google Scholar 

  • Mortezanejad, G., Rahimi, H., Romanelli, F., & Panza, G. F. (2018). Lateral variation of crust and upper mantle structures in NW Iran derived from surface wave analysis. Journal of Seismology. https://doi.org/10.1007/s10950-018-9794-1.

    Article  Google Scholar 

  • Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research, 100, 431–447.

    Google Scholar 

  • Mosegaard, K., & Vestergaard, P. D. (1991). A simulated annealing approach to seismic model optimization with sparse prior information. Geophysical Prospecting, 39, 599–611.

    Google Scholar 

  • Motavalli-Anbaran, S. H., Zeyen, H., & Jamasb, A. (2016). 3D crustal and lithospheric model of the Arabia-Eurasia collision zone. Journal of Asian Earth Sciences, 122, 158–167.

    Google Scholar 

  • Mutlu, A. K., & Karabulut, H. (2011). Anisotropic Pn tomography of Turkey and adjacent regions. Geophysical Journal International, 187, 1743–1758.

    Google Scholar 

  • Oreshin, S., Kiselev, S., Vinnik, L., Prakasam, K. S., Rai, S. S., Maketeva, L., et al. (2008). Crust and mantle beneath western Himalaya, Ladakh and western Tibet from integrated seismic data. Earth and Planetary Science Letters, 271, 76–87.

    Google Scholar 

  • Oreshin, S. I., Vinnik, L. P., Kiselev, S. G., Rai, S. S., Prakasam, K. S., & Treussov, A. V. (2011). Deep seismic structure of the Indian shield, western Himalaya, Ladakh and Tibet. Earth and Planetary Science Letters, 307, 415–429.

    Google Scholar 

  • Oruç, B., Gomez-Ortiz, D., & Petit, C. (2017). Lithospheric flexural strength and effective elastic thicknesses of the eastern Anatolia (Turkey) and surrounding region. Journal of Asian Earth Sciences, 150, 1–13.

    Google Scholar 

  • Özacar, A. A., Zandt, G., Gilbert, H., & Beck, S. L. (2010). Seismic images of crustal variations beneath the East Anatolian Plateau (Turkey) from teleseismic receiver functions. Geology Society London Special Publications, 340, 485–496.

    Google Scholar 

  • Özeren, M. S., & Holt, W. E. (2010). The dynamics of the eastern Mediterranean and eastern Turkey. Geophysical Journal International, 183, 1165–1184.

    Google Scholar 

  • Öztürk, S. (2017). Space-time assessing of the earthquake potential in recent years in the Eastern Anatolia region of Turkey. Earth Sciences Research Journal, 21(2), 67–75.

    Google Scholar 

  • Öztürk, S. (2018). Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers Earth Science, 12(1), 215–236.

    Google Scholar 

  • Pamukçu, O. A., Akçığ, Z., Demirbaş, Ş., & Zor, E. (2007). Investigation of crustal thickness in eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, 164, 2345–2358.

    Google Scholar 

  • Reilinger, R., Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., et al. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B05411. https://doi.org/10.1029/2005JB004051.

    Article  Google Scholar 

  • Salah, M. K., Şahin, Ş., & Aydın, U. (2011). Seismic velocity and Poisson’s ratio tomography of the crust beneath East Anatolia. Journal of Asian Earth Sciences, 40, 746–761.

    Google Scholar 

  • Selçuk, A. S. (2016). Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology, 270, 9–21.

    Google Scholar 

  • Şengör, A. M. C., & Kidd, W. S. F. (1979). Postcollisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55, 361–376.

    Google Scholar 

  • Şengör, A. M. C., Özeren, S., Genç, T., & Zor, E. (2003). East Anatolian high plateau as a mantle-supported, north-south shortened domal structure. Geophysical Research Letters, 30, 4.

    Google Scholar 

  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241.

    Google Scholar 

  • Silveira, G., Vinnik, L., Stutzmann, E., Kiselev, S., Farra, V., & Morais, I. (2010). Stratification of the Earth beneath the Azores from P and S receiver functions. Earth and Planetary Science Letters, 229, 91–103.

    Google Scholar 

  • Skobeltsyn, G., Mellors, R., Gök, R., Türkelli, N., Yetirmishli, G., & Sandvol, E. (2014). Upper mantle S wave velocity structure of the East Anatolian-Caucasus region. Tectonics, 33, 207–221.

    Google Scholar 

  • Stemmler, K., & Walther, M. (2013). Seismic Handler Development. Federal Institute for Geosciences and Natural Resources. http://www.seismic-handler.org/.

  • Sumita, M., & Schmincke, H. U. (2013). Impact of volcanism on the evolution of Lake Van II: temporal evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past ca. 0.4 Ma. Journal of Volcanology and Geothermal Research, 253, 15–34.

    Google Scholar 

  • Tiryakioglu, I., Yavasoglu, H., Ugur, M. A., Ozkaymak, C., Yilmaz, M., Kocaoglu, H., et al. (2017). Analysis of October 23 (Mw 7.2) and November 9 (Mw 5.6), 2011 Van earthquakes using long-term GNSS time series. Earth Sciences Research Journal, 21, 147–156.

    Google Scholar 

  • Toker, M. & Şahin, Ş. (2018). The crustal tomography (Vp, Vs, Vp/Vs) across the orogenic Lake region of Eastern Anatolia High Plateau (E-Turkey): Key constraints for thin-skinned tectonics. European Seismological Commission 36th General Assembly, 2–7 September, Valletta, Malta.

  • Toker, M., Şengör, A. M. C., Schluter, F. D., Demirbag, E., Cukur, D., Imren, C., et al. (2017). The structural elements and tectonics of the Lake Van basin (Eastern Anatolia) from multi-channel seismic reflection profiles. Journal of African Earth Sciences, 129, 165–178.

    Google Scholar 

  • Utkucu, M., Durmus, H., Yalcın, H., Budakoglu, E., & Isik, E. (2013). Coulomb static stress changes before and after the 23 October 2011 Van, Eastern Turkey, earthquake (Mw = 7.1): implications for the earthquake hazard mitigation. Natural Hazards and Earth Systems Sciences, 13, 1–14.

    Google Scholar 

  • Vanacore, E. A., Taymaz, T., & Saygın, E. (2013). Moho structure of the Anatolian Plate from receiver function analysis. Geophysical Journal International, 193, 329–337.

    Google Scholar 

  • Vinnik, L. (1977). Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors, 15, 39–45.

    Google Scholar 

  • Vinnik, L., Erduran, M., Oreshin, S. I., Kosarev, G. L., Kutlu, Yu A, Çakir, Ö., et al. (2014). Joint Inversion of P_ and S_Receiver functions and dispersion curves of Rayleigh waves: The results for the central Anatolian plateau. Physics of the Solid Earth, 50(5), 622–631.

    Google Scholar 

  • Vinnik, L., Kozlovskaya, E., Oreshin, S., Kosarev, G., Piiponen, K., & Silvennoinen, H. (2016). The lithosphere, LAB, LVZ and Lehmann discontinuity under central Fennoscandia from receiver functions. Tectonophysics, 667, 189–198.

    Google Scholar 

  • Vinnik, L. P., Oreshin, S. I., & Makeyeva, L. I. (2017). Siberian traps: hypotheses and seismology data. Physics of the Solid Earth, 53, 332.

    Google Scholar 

  • Vinnik, L. P., Reigber, C., Aleshin, I. M., Kosarev, G. L., Kaban, M. K., Oreshin, S. I., et al. (2004). Receiver function tomography of the central Tien Shan. Earth and Planetary Science Letters, 225, 131–146.

    Google Scholar 

  • Vinnik, L., Singh, A., Kiselev, S., & Kumar, M. R. (2007). Upper mantle beneath foothills of the western Himalaya: subducted lithospheric slab or a keel of the Indian shield? Geophysical Journal International, 171, 1162–1171.

    Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: Improved version released. EOS Transaction AGU, 94, 409–410.

    Google Scholar 

  • Wong, H. K., & Finckh, P. (1978). Shallow structures in Lake Van. In E. T. Degens & F. Kurtman (Eds.), Geology of Lake Van, 169 (pp. 20–28). New York: MTA.

    Google Scholar 

  • Zandt, G., & Ammon, C. (1995). Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature, 374, 152.

    Google Scholar 

  • Zhu, H. (2018). High Vp/Vs ratio in the crust and uppermost mantle beneath volcanoes in the Central and Eastern Anatolia. Geophysical Journal International, 214, 2151–2163.

    Google Scholar 

  • Zor, E., Sandvol, E., Gürbüz, C., Türkelli, N., Seber, D., & Barazangi, M. (2003). The crustal structure of the Eastern Anatolian Plateau (Turkey) from receiver functions. Geophysical Research Letters, 30, 8044.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief and two anonymous reviewers for constructive comments and suggestions and are grateful to Dr. Lev Vinnik for unique contributions. The authors also thank AFAD, KOERI, and EIDA for seismic data. Maps in this study were produced using Generic Mapping Tools (GMT) software (Wessel et al. 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdi Alkan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: because of retrospection Open Access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkan, H., Çınar, H. & Oreshin, S. Lake Van (Southeastern Turkey) Experiment: Receiver Function Analyses of Lithospheric Structure from Teleseismic Observations. Pure Appl. Geophys. 177, 3891–3909 (2020). https://doi.org/10.1007/s00024-020-02447-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02447-7

Keywords

Navigation