Skip to main content
Log in

The Chios, Greece Earthquake of 23 July 1949: Seismological Reassessment and Tsunami Investigations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a modern seismological reassessment of the Chios earthquake of 23 July 1949, one of the largest in the Central Aegean Sea. We relocate the event to the basin separating Chios and Lesvos, and confirm a normal faulting mechanism generally comparable to that of the recent Lesvos earthquake located at the Northern end of that basin. The seismic moment obtained from mantle surface waves, \(M_0 = 7 \times 10^{26}\) dyn cm, makes it second only to the 1956 Amorgos earthquake. We compile all available macroseismic data, and infer a preference for a rupture along the NNW-dipping plane. A field survey carried out in 2015 collected memories of the 1949 earthquake and of its small tsunami from surviving witnesses, both on Chios Island and nearby Oinousses, and on the Turkish mainland. While our results cannot help discriminate between the two possible fault planes of the 1949 earthquake, an important result is that both models provide an acceptable fit to the reported amplitudes, without the need to invoke ancillary sources such as underwater landslides, in contrast to the case of other historical tsunamis in the Aegean Sea, such as the 1956 Amorgos and 1948 Rhodos events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Galanopoulos (1954), Altınok et al. (2005), Chatzipetros et al. (2013; Fig. 5a) and Kiratzi (2018; Fig. 2)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We note here an inconsistency in the numbering by Karakostas et al. (2010) of several of the clusters, between their Figs. 6 and 7 and their Table 1. This makes any reference to their work difficult and potentially unreliable.

References

  • Altınok, Y., Alpar, B., Özer, N., & Gazioğlu, C. (2005). 1881 and 1949 earthquakes in the Chios-Çeşme Strait (Aegean Sea) and their relation to tsunamis. Natural Hazards and Earth System Sciences, 5, 717–725.

    Google Scholar 

  • Ambraseys, N. N. (1998). Engineering seismology. Earthquake Engineering and Structural Dynamics, 17, 1–105.

    Google Scholar 

  • Ambraseys, N. N. (2001). Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International, 145, 471–485.

    Google Scholar 

  • Boatwright, J., & Choy, G. L. (1986). Teleseismic estimates of the energy radiated by shallow earthquakes. Journal of Geophysical Research, 91, 2095–2112.

    Google Scholar 

  • Caputo, R., Chatzipetros, A., Pavlides, S., & Sboras, S. (2012). The Greek database of seismogenic sources (GreDaSS): State-of-the-art for northern Greece. Annals of Geophysics, 55, 859–894.

    Google Scholar 

  • Charlier, C., & van Gils, J.-M. (1953). Catalogue des stations séismologiques mondiales. Uccle: Observatoire Royal de Belgique.

    Google Scholar 

  • Chatzipetros, A., Kiratzi, A., Sboras, S., Zouros, N., & Pavlides, S. (2013). Active faulting in the north-eastern Aegean Sea islands. Tectonophysics, 507, 106–122.

    Google Scholar 

  • Doğan, G. G., Annunziato, A., Papadopoulos, G. A., Güler, H. G., Yalçıner, A. C., Çakır, T. E., et al. (2019). The 20th July 2017 Bodrum-Kos tsunami field survey. Pure and Applied Geophysics, 176, 2925–2949.

    Google Scholar 

  • Ebeling, C. W., Okal, E. A., Kalligeris, N., & Synolakis, C. E. (2012). Modern seismological reassessment and tsunami simulation of historical Hellenic Arc earthquakes. Tectonophysics, 530, 225–239.

    Google Scholar 

  • Ekström, G., & England, P. (1989). Seismic strain rates in regions of distributed continental deformation. Journal of Geophysical Research, 94, 10231–10257.

    Google Scholar 

  • Engdahl, E. R., & Villaseñor, A. (2002). Global seismicity: 1900–1999. International earthquake and engineering seismology Part A (pp. 665–690). New York: Elsevier.

    Google Scholar 

  • Erkman, H. K. (1949). 23-7-1949 Karaburun (İzmir) zelzelesı (19 pp.). Istanbul: Kandilli Observatory.

    Google Scholar 

  • Field, E. H., Seligson, H. A., Gupta, N., Gupta, V., Jordan, T. H., & Campbell, K. (2005). Loss estimates for a Puente Hills Blind-Thrust earthquake in Los Angeles. Earthquake Spectra, 21, 329–338.

    Google Scholar 

  • Galanopoulos, A. (1954). Die Seismizität der Insel Chios. Gerlands Beiträge zur Geophysik, 63, 253–264.

    Google Scholar 

  • Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66, 1501–1523.

    Google Scholar 

  • Godunov, S. K. (1959). Finite difference methods for numerical computations of discontinuous solutions of the equations of fluid dynamics. Matematicheskii Sbornik, 47, 271–295.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1942). Earthquake magnitude, intensity, energy and acceleration. Bulletin of the Seismological Society of America, 32, 163–191.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1954). Seismicity of the earth and associated phenomena (310 pp.). Princeton: Princeton University Press.

    Google Scholar 

  • Heidarzadeh, M., Necmioğlu, O., Ishibe, T., & Yalçıner, A. C. (2017). Bodrum–Kos (Turkey–Greece) \(M_w = 6.6\) earthquake and tsunami of 20 July 2017: A test for the Mediterranean tsunami warning system. Geoscience Letters, 4(31), 11.

    Google Scholar 

  • Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106, 709–716.

    Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6, 346–359.

    Google Scholar 

  • Karakaisis, G. F., Papazachos, C. B., & Scodilis, E. M. (2010). Seismic sources and main seismic faults in the Aegean and surrounding area. Bulletin of the Geological Society of Greece, 43, 2026–2042.

    Google Scholar 

  • Karakostas, V. G., Papadimitriou, E. E., Tranos, M. D., & Papazachos, C. B. (2010). Active seismotectonic structures in the area of Chios Island, North Aegean Sea, revealed from microseismicity and fault plane solutions. Bulletin of the Geological Society of Greece, 43, 2064–2074.

    Google Scholar 

  • Kiratzi, A. A. (2018). The 12 June 2017 \(M_w = 6.3\) Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite-fault inversion. Tectonophysics, 724, 1–10.

    Google Scholar 

  • Labrouste, H., & Pinar, N. (1953). Etude microséismique des tremblements de terre du 23 juillet 1949 et du 13 août 1951 en Turquie. Bull Inform UGGI, 2, 267–269.

    Google Scholar 

  • Linkimer, L. (2008). Application of the kriging method to draw isoseismal maps of the significant 2002–2003 Costa Rica earthquakes. Revista Geologica de America Central, 38, 119–134.

    Google Scholar 

  • Mansinha, L. A., & Smylie, D. E. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61, 1433–1440.

    Google Scholar 

  • McKenzie, D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109–185.

    Google Scholar 

  • Melis, N. S., Barberopoulou, A., Frentzos, E., & Krassanakis, V. (2016). Scenario based tsunami wave height estimation towards hazard evaluation for the Hellenic coastline and examples of extreme inundation zones in South Aegean. Geophysical Research Abstracts, 18, 1. (EGU2-16-11285-1, Vienna [abstract]).

    Google Scholar 

  • Musson, R. M., Grünthal, G., & Stucchi, M. (2010). The comparison of macroseismic intensity scales. Journal of Seismology, 14, 413–428.

    Google Scholar 

  • Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The \( E/M_0 \) discriminant for tsunami earthquakes. Journal of Geophysical Research, 103, 26885–26898.

    Google Scholar 

  • Okal, E. A., & Borrero, J. C. (2011). The “tsunami earthquake” of 22 June 1932 in Manzanillo, Mexico: Seismological study and tsunami simulations. Geophysical Journal International, 187, 1443–1459.

    Google Scholar 

  • Okal, E. A., Fritz, H. M., Hamzeh, M. A., & Ghasemzadeh, J. (2015). Field survey of the 1945 Makran and 2004 Indian Ocean tsunamis in Baluchistan, Iran. Pure and Applied Geophysics, 172, 3343–3356.

    Google Scholar 

  • Okal, E. A., & Kirby, S. H. (2002). Energy-to-moment ratios for damaging intraslab earthquakes: Preliminary results on a few case studies. USGS Open File Reports, 02–328, 127–131.

    Google Scholar 

  • Okal, E. A., & Saloor, N. (2017). Historical tsunami earthquakes in the Southwest Pacific: An extension to \(\Delta > 80^{\circ }\) of the energy-to-moment parameter \(\Theta \). Geophysical Journal International, 210, 852–873.

    Google Scholar 

  • Okal, E. A., Synolakis, C. E., Fryer, G. J., Heinrich, P., Borrero, J. C., Ruscher, C., et al. (2002). A field survey of the 1946 Aleutian tsunami in the far field. Seismological Research Letters, 73, 490–503.

    Google Scholar 

  • Okal, E. A., Synolakis, C. E., Uslu, B., Kalligeris, N., & Voukouvalas, E. (2009). The 1956 earthquake and tsunami in Amorgos, Greece. Geophysical Journal International, 178, 1533–1554.

    Google Scholar 

  • Okal, E. A., & Talandier, J. (1989). \(M_m\): A variable period mantle magnitude. Journal of Geophysical Research, 94, 4169–4193.

    Google Scholar 

  • Papadopoulos, G. A. (2015). Tsunamis in the European-Mediterranean region: From historical record to risk mitigation (271 pp.). Amsterdam: Elsevier.

    Google Scholar 

  • Papazachos, B., & Papazachou, C. (1997). The earthquakes of Greece (304 pp.). Thessaloniki: Ziti.

    Google Scholar 

  • Pinar, N. (1950). Etude géologique et séismologique du tremblement de terre de Karaburun (Izmir) du 23 juillet 1949. Revue de la Faculté des Sciences de l’Université d’Istamboul, 15, 363–375.

    Google Scholar 

  • Sboras, S. (2011). The Greek Database of Seismogenic Sources: Seismotectonic implications for North Greece. PhD Thesis, University of Ferrara, 274 pp.

  • Schenková, Z., Schenk, V., Kalogeras, I., Pichl, R., Kottnauer, P., Papatsimba, C., et al. (2007). Isoseismal maps drawing by the kriging method. Search Results, 11, 345–353.

    Google Scholar 

  • Solov’ev, S. L., Solov’eva, O. N., Go, Ch. N., Kim, Kh. S., & Shchetnikov, N. A. (2013). Tsunamis in the Mediterranean Sea, 2000 B.C.–2000 A.D. (308 pp.). Dordrecht: Elsevier.

    Google Scholar 

  • Storchak, D. A., Di Giacomo, D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H. K., et al. (2013). Public release of the ISC-GEM global instrumental earthquake catalogue (1900–2009). Seismological Research Letters, 84, 810–815.

    Google Scholar 

  • Synolakis, C. E. (2003). Tsunami and seiche. In W.-F. Chen & C. Scawthron (Eds.), Earthquake Engineering Handbook (pp. 9_1–9_90). Boca Raton: CRC Press.

    Google Scholar 

  • Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., & González, F. (2008). Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165, 2197–2228.

    Google Scholar 

  • Taymaz, T., Jackson, J., & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106, 433–490.

    Google Scholar 

  • Titov, V. V., Kânoğlu, U., & Synolakis, C. E. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(6), 03116004.

    Google Scholar 

  • Titov, V. V., Moore, C. W., Greenslade, D. J. M., Pattiaratchi, C., Badal, R., Synolakis, C. E., et al. (2011). A new tool for inundation modeling: Community Modeling Interface for Tsunamis (ComMIT). Pure and Applied Geophysics, 168, 2121–2131.

    Google Scholar 

  • Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 157–171.

    Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos Transactions American Geophysical Union, 72, 441, 445–446.

    Google Scholar 

  • Wickens, A. J., & Hodgson, J. H. (1967). Computer re-evaluation of earthquake mechanism solutions, 1922–1962. Publications of the Dominion Observatory, Ottawa, 33(1), 71.

    Google Scholar 

  • Wysession, M. E., Okal, E. A., & Miller, K. L. (1991). Intraplate seismicity of the Pacific Basin, 1913–1988. Pure and Applied Geophysics, 135, 261–359.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Brian Ferris (Lower Hutt), Marjan Herak (Zagreb), and Eliška Zábranová (Prague) for access to historical records. Some figures were drafted using the GMT software (Wessel and Smith 1991). We thank two anonymous reviewers for their comments on the original draft of the paper. We salute the memory of Neşe Kânoğlu who shared with us the surveying in Turkey before her untimely passing in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile A. Okal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4.

Table 4 Macroseismic dataset compiled in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melis, N.S., Okal, E.A., Synolakis, C.E. et al. The Chios, Greece Earthquake of 23 July 1949: Seismological Reassessment and Tsunami Investigations. Pure Appl. Geophys. 177, 1295–1313 (2020). https://doi.org/10.1007/s00024-019-02410-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02410-1

Keywords

Navigation