Skip to main content
Log in

Source Models of the 2012 Haida Gwaii (Canada) and 2015 Illapel (Chile) Earthquakes and Numerical Simulations of Related Tsunamis

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Seismological observations provide essential input parameters for numerical tsunami simulations. Here, we present source mechanism parameters, finite-fault source rupture models and numerical tsunami simulation results for the destructive October 28, 2012 Haida Gwaii-Canada (Mw 7.7) and September 16, 2015 Illapel-Chile (Mw 8.3) earthquakes and resulting tsunamis. These two earthquakes were controlled by active tectonic features along the subduction zones that had developed in response to the convergent movements of lithospheric plates. The faulting geometry (strike, dip, and rake angles), focal depth, fault dimensions, average and maximum slip values on the fault planes and seismic moments of the earthquakes are estimated by analyzing teleseismic long-period P- and SH-waves and broadband P-waveforms and using waveform inversion and hybrid back-projection methods. The obtained slip models of the earthquakes reveal heterogeneous slip distributions on fault planes with long source durations (~ 80 s and 150 s) and low stress drop values (10–15 bars). Numerical simulations of tsunami wave propagation are further performed using the uniform and non-uniform slip models and nonlinear long-wave equations in spherical coordinates. The shape and arrival times of leading tsunami waves are adequately constrained particularly with the heterogeneous slip distribution models. The general characteristics of synthetic tsunami waveforms (e.g., amplitude, shape, arrival time) calculated using the non-uniform slip model, are more consistent with the observed tsunami records than those of a uniform slip model. It is further seen that simulation results using preliminary and fast slip models for both earthquakes give only approximate early tsunami estimates; tsunami wave heights and arrival times to the coasts are mostly not well simulated. The results indicate that tsunami simulations based on finite-fault source slip models likely contribute to the determination of tsunamigenic coastal regions by revealing locations, arrival times, amplitudes, and directions of tsunami waves within a close approximation to observed records off-shore and far from the source region. They provide sufficient information to facilitate tsunami warning and mitigation challenges after the destructive earthquakes. We further suggest that joint inversions of GPS, tsunami, teleseismic and strong ground motion records and higher resolution bathymetry data are needed in order to obtain better correlations between observed and synthetic tsunami data, especially for the later arriving waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Aki, K. (1972). Earthquake mechanism. Tectonophysics, 13(1–4), 423–446.

    Google Scholar 

  • Ammon, C. J., Lay, T., Kanamori, H., & Cleveland, M. (2011). A rupture model of the 2011 off the Pacific coast of Tohoku-Oki earthquake. Earth Planets Space, 63, 693–696.

    Google Scholar 

  • Angermann, D., Klotz, J., & Reigber, C. (1999). Space-geodetic estimation of the Nazca-South America Euler vector. Earth and Planetary Science Letters, 171, 329–334.

    Google Scholar 

  • Annunziato, A. (2007). The Tsunami assesment modelling system by the joint research center. Science of Tsunami Hazards, 26, 70–92.

    Google Scholar 

  • Aranguiz, R., González, G., González, J., et al. (2016). The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics, 173, 333–348.

    Google Scholar 

  • Araujo, M., & Suárez, G. (1994). Geometry and state of stress of the subducted Nazca Plate beneath central Chile and Argentina: Evidence from teleseismic data. Geophysical Journal International, 116, 283–303.

    Google Scholar 

  • Arvidsson, R., & Ekström, G. (1998). Global CMT analysis of moderate earthquakes, M w ≥ 4.5, using intermediate-period surface waves. Bulletin of the Seismological Society of America, 88(4), 1003–1013.

    Google Scholar 

  • Bahlburg, H., Nentwig, V., & Kreutzer, M. (2017). The September 16, 2015 Illapel tsunami, Chile—Sedimentology of tsunami deposits at the beaches of La Serena and Coquimbo. Marine Geology. https://doi.org/10.1016/j.margeo.2016.12.011.

    Google Scholar 

  • Beck, S., Barrientos, S., Kausel, E., & Reyes, M. (1998). Source characteristics of historic earthquakes along the central Chile subduction zone. Journal of South American Earth Sciences, 11, 115–129.

    Google Scholar 

  • Bird, A. L., & Lamontagne, M. (2015). Impacts of the October 2012 magnitude 7.8 earthquake near Haida Gwaii, Canada. 105. Bulletin of the Seismological Society of America, 105(2B), 1178–1192.

    Google Scholar 

  • Bostwick, T.K. (1984). Re-examination of the August 22, 1949 Queen Charlotte Earthquake. Ph.D. Thesis, The Faculty of Graduate Studies Department of Geophysics and Astronomy, The University of British Columbia, Canada, p. 115.

  • Calisto, I., Miller, M., & Constanzo, I. (2016). Comparison between tsunami signals generated by different source models and the observed data of the Illapel 2015 Earthquake. Pure and Applied Geophysics, 173, 1051–1061.

    Google Scholar 

  • Cassidy, J. F., Rogers, G. C., & Hydnman, R. D. (2014). An overview of the 28 October 2012 M w 7.7 earthquake in Haida Gwaii, Canada: A tsunamigenic thrust event along a predominantly strike-slip margin. Pure and Applied Geophysics, 171, 3457–3465.

    Google Scholar 

  • Chunyan, Q., Ronghu, Z., XinJian, S., et al. (2017). Coseismic and post-seismic deformation fields mapped using satelliteradar interferometry and fault slip inversion of the 2015 Mw 8.3 Illapel earthquake. Chile. Journal of Geodynamics, 104, 36–48.

    Google Scholar 

  • De Mets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motion. Geophysical Journal International, 181, 1–80.

    Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Google Scholar 

  • ESRI. (2010). ArcGIS desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

    Google Scholar 

  • Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y., et al. (2013). Multiscale full waveform inversion. Geophysical Journal International, 194(1), 534–556.

    Google Scholar 

  • Filloux, J. H. (1982). Tsunami recorded on the open ocean floor. Geophysical Research Letters, 9(1), 25–28.

    Google Scholar 

  • Filloux, J. H. (1983). Pressure fluctuations on the open ocean floor off the Gulf of California: Tides, earthquakes, tsunamis. Journal of Physical Oceanography, 13(5), 783–796.

    Google Scholar 

  • Fine, I. V., Cherniawsky, J. Y., Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2015). Observations and numerical modeling of the 2012 Haida Gwaii tsunami off the coast of British Columbia. Pure and Applied Geophysics, 172, 699–718.

    Google Scholar 

  • Franchello, G. (2010). Shoreline tracking and implicit source terms for a well-balanced inundation model. International Journal of Numerical Methods Fluids, 63, 1123–1146.

    Google Scholar 

  • Fuentes, M., Riquelme, S., Hayes, G., et al. (2016). A Study of the 2015 Mw 8.3 Illapel earthquake and tsunami: Numerical and analytical approaches. Pure and Applied Geophysics, 173, 1847–1858.

    Google Scholar 

  • Fukahata, Y., Yagi, Y., & Matsuura, M. (2003). Waveform inversion for seismic source processes using ABIC with two sorts of prior constraints: Comparison between proper and improper formulations. Geophysical Research Letters. https://doi.org/10.1029/2002gl016293.

    Google Scholar 

  • Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research, 107, B5. https://doi.org/10.1029/2000JB000139.

    Google Scholar 

  • Geist, E. L., & Dmowska, R. (1999). Local tsunamis and distributed slip at the source. Pure and Applied Geophysics, 154, 485–512.

    Google Scholar 

  • George, D. L., & LeVeque, R. J. (2006). Finite volume methods and adaptive refinement for global tsunami propagation and indundation. Science of Tsunami Hazards, 24(5), 319–328.

    Google Scholar 

  • Gica, E., Titov, V. V., Moore, C., & Wei, Y. (2015). Tsunami simulation using sources inferred from various measurement data: Implictions for the model forecast. Pure and Applied Geophysics, 172, 773–789.

    Google Scholar 

  • Goda, K., Yasuda, T., Mori, N., & Maruyama, T. (2016). New scaling relationships of earthquake source parameters for stochastic tsunami simulation. Coastal Engineering Journal. https://doi.org/10.1142/S0578563416500108.

    Google Scholar 

  • Goldstein, P., Dodge, D., Firpo, M., & Minner, L. (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers. In W. H. K. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), Contribution to “The IASPEI International Handbook of Earthquake and Engineering Seismology”. London: Academic.

    Google Scholar 

  • González, F. I., Bernard, E. N., Meinig, C., Eblé, M. C., Mofjeld, H. O., & Stalin, S. (2005). The NTHMP tsunameter network. Natural Hazards, 35, 25–39.

    Google Scholar 

  • González, F.I., Milburn, H.M., Bernard, E.N., & Newman, J.C. (1998). Deep-ocean Assessment and Reporting of Tsunamis (DART®): Brief overview and status report. In Proceedings of the International Workshop on Tsunami Disaster Mitigation, 1922 January 1998, Tokyo, Japan.

  • Gosselin, J. M., Cassidy, J. F., & Dosso, S. E. (2015). Shear-wave velocity structure in the vicinity of the 2012 M w 7.8 Haida Gwaii earthquake from receiver function inversion. Bulletin of the Seismological Society of America, 105(2B), 1106–1113.

    Google Scholar 

  • Gusman, A. R., Mulia, I. E., Satake, K., Watada, S., Heidarzadeh, M., & Sheehan, A. F. (2016). Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake. Geophysical Research Letters, 43, 9819–9828.

    Google Scholar 

  • Gusman, A. R., Tanioka, Y., MacInnes, B. T., & Tsushima, H. (2014). A methodology for near-field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami. Journal of Geophysical Research Solid Earth, 119, 8186–8206.

    Google Scholar 

  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., & Gusman, A. R. (2015). Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43, 643–650.

    Google Scholar 

  • Henry, C., & Das, S. (2001). Aftershock zones of large shallow earthquakes: Fault dimensions, aftershock area expansion and scaling relations. Geophysical Journal International, 147, 272–293.

    Google Scholar 

  • Hyndman, R. D. (2015). Tectonics and structure of the Queen Charlotte Fault Zone, Haida Gwaii, and large thrust earthquakes. Bulletin of the Seismological Society of America. https://doi.org/10.1785/012014018.

    Google Scholar 

  • Hyndman, R. D., & Ellis, R. M. (1981). Queen Charlotte Fault Zone: Microearthquakes from a temporary array of land stations and ocean bottom seismographs. Canadian Journal of Earth Sciences, 18, 776–788.

    Google Scholar 

  • Imamura, F. (1996). Review of tsunami simulation with a finite-difference method. In H. Yeh, P. Liu, & C. Synolakis (Eds.), Long-Wave Runup Models (pp. 25–42). Singapore: World Scientific.

    Google Scholar 

  • Imamura, F., Shuto, N., & Goto, C. (1988). Numerical simulations of the transoceanic propagation of tsunamis. 6th Congress APD-IAHR, pp. 265–272.

  • JRC. (2015). M w 8.3 Chile—Earthquake and tsunami. Ispra: European Commision Joint Research Centre.

    Google Scholar 

  • Kaiser, G., Scheele, L., Kortenhaus, A., Løvholt, F., Romer, H., & Leschka, S. (2011). The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Natural Hazards and Earth System Sciences, 11, 2521–2540.

    Google Scholar 

  • Kajiura, K. (1963). The leading wave of a tsunami. Bulletin of the Earthquake Research Institute, 41, 535–571.

    Google Scholar 

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2986.

    Google Scholar 

  • Kanamori, H. (1994). Mechanics of earthquakes. Annual Review of Earth and Planetary Sciences, 22, 207–237.

    Google Scholar 

  • Kao, H., Shan, S.-J., & Farahbod, A. M. (2015). Source characteristics of the 2012 Haida Gwaii earthquake sequence. Bulletin of the Seismological Society of America, 105(2B), 1206–1218.

    Google Scholar 

  • Klein, E., Vigny, C., Fleitout, L., et al. (2017). A comprehensive analysis of the Illapel 2015 Mw 8.3 earthquake from GPS and InSAR data. Earth and Planetary Science Letters, 469, 123–134.

    Google Scholar 

  • Kotani, M., Imamura, F., & Shuto, N. (1998). Tsunami run-up simulation and damage estimation by using geographical information system. Proceedings of Coastal Engineering JSCE, 45, 356–360. (in Japanese).

    Google Scholar 

  • Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheung, K. F., Kwong, K., et al. (2013). The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth and Planetary Science Letters, 375, 57–70.

    Google Scholar 

  • Lemoine, A., Madariaga, R., & Campos, J. (2002). Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones. Physics of the Earth and Planetary Interiors, 132, 157–175.

    Google Scholar 

  • Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100, 1971–1988.

    Google Scholar 

  • Leonard, L. J., & Bednarski, J. M. (2014). Field survey following the 28 October 2012 Haida Gwaii tsunami. Pure and Applied Geophysics, 171(12), 3467–3482.

    Google Scholar 

  • Leonard, L. J., & Bednarski, J. M. (2015). The preservation potential of coastal coseismic and tsunami evidence observed following the 2012 Mw 7.8 Haida Gwaii thrust earthquake. Bulletin of the Seismological Society of America, 105(2B), 1280–1289.

    Google Scholar 

  • Lorito, S., Romano, F., Piatanesi, A., & Boschi, E. (2008). Source process of the September 12, 2007, Mw 8.4 southern Sumatra earthquake from tsunami tide gauge record inversion. Geopysical Research Letters, 35, L02310. https://doi.org/10.1029/2007gl032661.

    Google Scholar 

  • Løvholt, F., Pedersen, G., Bazin, S., Kuhn, D., Bredesen, R. E., & Harbitz, C. (2012). Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. Journal of Geophysical Research, 117, C03047.

    Google Scholar 

  • MacInnes, B. T., Gusman, A. R., Leveque, R. J., & Tanioka, Y. (2013). Comparison of earthquake source models for the 2011 Tohoku Event using tsunami simulations and near-field observations. Bulletin of the Seismological Society of America, 103(2B), 1256–1274.

    Google Scholar 

  • Mader, C. (1988). Numerical modeling of water waves (p. 206). Berkeley, California: University of California Press.

    Google Scholar 

  • Mai, P. M., & Beroza, G. C. (2000). Source scaling properties from finite-fault-rupture models. Bulletin of the Seismological Society of America, 90, 604–615.

    Google Scholar 

  • MathWorks (2012). Signal processing toolbox, Butterworth filter design: User’s Guide (R2012a), https://www.mathworks.com/help/signal/ref/butter.html. Accessed Nov 2017.

  • McCaffrey, R., Zwick, P., & Abers, G. A. (1991). SYN4 program. IASPEI Software Library, 3, 81–166.

    Google Scholar 

  • Melgar, D., Fan, W., Riquelme, S., et al. (2016). Slip segmentation and slow rupture to the trench during the 2015, Mw 8.3 Illapel, Chile earthquake. Geophysical Research Letters, 43, 961–966.

    Google Scholar 

  • Minster, J. B., & Jordan, T. H. (1978). Present day plate motions. Journal of Geophysical Research, 83, 5331–5354.

    Google Scholar 

  • Mofjeld, H. O., Titov, V. V., González, F. I., & Newman, J. C. (2001). Tsunami scattering provinces in the Pacific Ocean. Geophysical Research Letters, 28(2), 35–337.

    Google Scholar 

  • NDBC (2012, 2015). National Data Buoy Center. http://www.ndbc.noaa.gov/. Accessed Sept 2015.

  • NGDC-NOAA (2012, 2015). National Geophysical Data Center. http://www.ngdc.noaa.gov/hazard/recenttsunamis.shtml. Accessed Sept 2015.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.

    Google Scholar 

  • Okal, E. A. (1988). Seismic parameters controlling far-field tsunami amplitudes: A review. Natural Hazards, 1, 67–96.

    Google Scholar 

  • Okuwaki, R., Yagi, Y., Aranguiz, R., González, J., & González, G. (2016). Rupture process during the 2015 Illapel, Chile earthquake: Zigzag-along-dip rupture episodes. Pure and Applied Geophysics, 173, 1011–1020.

    Google Scholar 

  • Okuwaki, R., Yagi, Y., & Hirano, S. (2014). Relationship between high frequency radiation and asperity ruptures, revealed by hybrid backprojection with a non-planar fault model. Scientific Reports, 4(1), 7120. https://doi.org/10.1038/srep07120.

    Google Scholar 

  • Omira, R., Baptista, M. A., & Lisboa, F. (2016). Tsunami characteristics along the Peru-Chile Trench: Analysis of the 2015 M w 8.3 Illapel, the 2014 M w 8.2 Iquique and the 2010 M w 8.8 Maule tsunamis in the near-field. Pure and Applied Geophysics, 173, 1063–1077.

    Google Scholar 

  • Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., Papazachos, C. B., & Karakaisis, G. F. (2004). Global relations between seismic fault parameters and moment magnitude of earthquakes. Bulletin of the Geological Society of Greece, 36, 1482–1489.

    Google Scholar 

  • Perez, O. J., & Jacob, K. H. (1980). Tectonic model and seismic potential of the eastern Gulf of Alaska and Yakataga seismic gap. Journal of Geophysical Research, 85, 7132–7150.

    Google Scholar 

  • Piatanesi, A., Tinti, S., & Pagnoni, G. (2001). Tsunami waveform inversion by numerical finite-elements Green’s functions. Natural Hazards Earth System Sciences, 1, 187–194.

    Google Scholar 

  • PSMSL (2012, 2015). Permanent service for mean sea level. Obtaining tide gauge. http://www.psmsl.org/data/obtaining/. Accessed Sept 2015.

  • Rabinovich, A. B., Candella, R. N., & Thomson, R. E. (2013). The open ocean energy decay of three recent trans-Pacific tsunamis. Geophysical Research Letters, 40, 3157–3162. https://doi.org/10.1002/grl.50625.

    Google Scholar 

  • Rabinovich, A. B., & Eblé, M. C. (2015). Deep-ocean measurements of tsunami waves. Pure and Applied Geophysics, 172, 3281–3312.

    Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., Titov, V. V., Stephenson, F. E., & Rogers, G. C. (2008). Locally generated tsunamis recorded on the coast of British Columbia. Atmosphere–Ocean, 46(3), 343–360.

    Google Scholar 

  • Riddihough, P. (1977). A model for recent plate interactions off Canada’s west coast. Canadian Journal of Earth Sciences, 14, 384–396.

    Google Scholar 

  • Rogers, G. (1983). Seismotectonics of British Columbia. Ph.D. thesis, University of British Columbia.

  • Ruiz, S., Klein, E., del Campo, F., et al. (2016). The seismic sequence of the 16 September 2015 M w 8.3 Illapel, Chile earthquake. Seismological Research Letters. https://doi.org/10.1785/0220150281.

    Google Scholar 

  • Saltogianni, V., Taymaz, T., Yolsal-Çevikbilen, S., Eken, T., Moschas, F., & Stiros, S. (2016). Fault model for the 2015 Leucas (Aegean Arc) earthquake: analysis based on seismological and geodetic observations. Bulletin of the Seismological Society of America, 107(1), 433–444.

    Google Scholar 

  • Santos, A., Tavares, A. O., & Queiros, M. (2016). Numerical modelling and evacuation strategies for tsunami awareness: Lessons from the 2012 Haida Gwaii Tsunami. Geomatics, Natural Hazards and Risk, 7(4), 1442–1459.

    Google Scholar 

  • Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: Method and numerical experiments. Journal of Physics of the Earth, 35(3), 241–254.

    Google Scholar 

  • Satake, K., & Heidarzadeh, M. (2017). A review of source models of the 2015 Illapel, Chile earthquake and insights from tsunami data. Pure and Applied Geophysics, 174, 1–9.

    Google Scholar 

  • Shuto, N., & Goto, C. (1978). Numerical simulation of tsunami run-up. Coastal Engineering in Japan, 21, 13–20.

    Google Scholar 

  • SLSMF (2012, 2015). Sea Level Station Monitoring Facility. Station Lists. http://www.ioc-sealevelmonitoring.org/list.php. Accessed Sept 2015.

  • Spudich, P., & Frazer, L. (1984). Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bulletin of the Seismological Society of America, 74(6), 2061–2082.

    Google Scholar 

  • Taymaz, T., Jackson, J., & Westaway, R. (1990). Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International, 102, 695–731.

    Google Scholar 

  • Taymaz, T., & Price, S. (1992). The 1971 May 12 Burdur earthquake sequence, SW Turkey: A synthesis of seismological and geological observations. Geophysical Journal International, 108, 589–603.

    Google Scholar 

  • Tichelaar, B. W., & Ruff, L. J. (1991). Seismic coupling along the Chilean subduction zone. Journal of Geophysical Research, 96, 11997–12022.

    Google Scholar 

  • Tilmann, F., Zhang, Y., Moreno, M., et al. (2016). The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake? Geophysical Research Letters, 43, 574–583.

    Google Scholar 

  • Titov, V. V., & González, F. I. (1997). Implementation and testing of the method splitting tsunami (MOST) model. NOAA Technical Memorandum ERL PMEL-112.

  • Ulutaş, E. (2011). Tsunami simulation of the October 25, 2010, South Pagai Island, Sumatra earthquake. International Journal of Physical Sciences, 6, 459–475.

    Google Scholar 

  • Ulutaş, E. (2013). Comparison of the seafloor displacement from uniform and non-uniform slip models on tsunami simulation of the 2011 Tohoku-Oki earthquake. Journal of Asian Earth Sciences, 62, 568–585.

    Google Scholar 

  • Ulutaş, E., Inan, A., & Annunziato, A. (2012). Web-based tsunami early warning system: A case study of the 2010 Kepulaunan Mentawai earthquake and tsunami. Natural Hazards Earth System Sciences, 12, 1855–1871.

    Google Scholar 

  • USGS (2012a). United States Geological Survey, Earthquake Hazards Program, Origin of the October 28, 2012 earthquake. https://earthquake.usgs.gov/earthquakes/eventpage/usp000juhz#origin. Accessed Nov 2012.

  • USGS (2012b). United States Geological Survey, Earthquake Hazards Program, Preliminary Finite Fault Results for the October 28, 2012 Haida Gwaii earthquake. https://earthquake.usgs.gov/earthquakes/eventpage/usp000juhz#finite-fault. Accessed Nov 2012.

  • USGS (2015a). United States Geological Survey, Earthquake Hazards Program, Origin of September 16, 2015 Chile earthquake. https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a#origin. Accessed Nov 2015.

  • USGS (2015b). United States Geological Survey, Earthquake Hazards Program, Preliminary Finite Fault Results for the Sep 16, 2015 Mw 8.2 earthquake. https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a#finite-fault. Accessed Nov 2015.

  • Vigny, C., Rudloff, A., Ruegg, J.-C., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Physics of the Earth and Planetary Interiors, 175(1–2), 86–95.

    Google Scholar 

  • Wang, K., He, J., Schulzeck, F., Hyndman, R. D., & Riedel, M. (2015). Thermal condition of the 27 October 2012 M w 7.8 Haida Gwaii subduction earthquake at the obliquely convergent Queen Charlotte margin. Bulletin of the Seismological Society of America, 105(2B), 1290–1300.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New, improved version of the generic mapping tools released. EOS Transactions American Geophysical Union, 79, 579.

    Google Scholar 

  • Yagi, Y., & Fukahata, Y. (2011). Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophysical Journal International, 186, 711–720.

    Google Scholar 

  • Yagi, Y., & Kikuchi, M. (2000). Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophysical Research Letters, 27, 1969–1972.

    Google Scholar 

  • Yagi, Y., Nakao, A., & Kasahara, A. (2012a). Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth and Planetary Science Letters, 355–356, 94–101.

    Google Scholar 

  • Yagi, Y., Nishimura, N., & Kasahara, A. (2012b). Source process of the 12 May 2008 Wenchuan, China, earthquake determined by waveform inversion of teleseismic body waves with a data covariance matrix. Earth Planets Space, 64, e13–e16.

    Google Scholar 

  • Yalçıner, A. C., Pelinovsky, E., Talipova, T., Kurkin, A., Kozelkov, A., & Zaitsev, A. (2004). Tsunamis in the Black Sea: Comparison of the historical, instrumental, and numerical data. Journal of Geophysical Research Oceans, 109, C12023. https://doi.org/10.1029/2003JC002113.

    Google Scholar 

  • Yamazaki, Y., & Cheung, K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38, L12605. https://doi.org/10.1029/2011GL047508.

    Google Scholar 

  • Ye, L., Lay, T., Kanamori, H., & Koper, K. (2016). Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile M w 8.3 earthquake. Pure and Applied Geophysics, 173, 321–332.

    Google Scholar 

  • Yin, J., Yang, H., Yao, H., & Weng, H. (2016). Coseismic radiation and stress drop during the 2015 M w 8.3 Illapel, Chile megathrust earthquake. Geophysical Research Letters. https://doi.org/10.1002/2015GL067381.

    Google Scholar 

  • Yolsal, S., & Taymaz, T. (2010). Sensitivity analysis on relations between earthquake source rupture parameters and tsunami waves: Case studies in the Eastern Mediterranean region. Turkish Journal of Earth Sciences, 19(3), 313–349.

    Google Scholar 

  • Yolsal, S., Taymaz, T., & Yalçıner, A. C. (2007). Understanding tsunamis, potential source regions and tsunami prone mechanisms in the Eastern Mediterranean. The Geodynamics of the Aegean and Anatolia, Special Publication Geological Society, London, Special Publications, 291, 201–230.

    Google Scholar 

  • Yolsal-Çevikbilen, S., & Taymaz, T. (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536–537, 61–100.

    Google Scholar 

  • Zwick, P., McCaffrey, R., & Abers, G. A. (1994). MT5 program, IASPEI Software Library 4.

Download references

Acknowledgements

This study is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No: ÇAYDAG-114Y066). We would like to thank the İstanbul Technical University Research Fund (İTÜ-BAP) and Alexander von Humboldt-Stiftung (AvH) for their financial support. Generic Mapping Tools (GMT) (Wessel and Smith 1998) and SAC2000 (Goldstein et al. 2003) software packages were used to prepare figures, and to process conventional earthquake data, respectively. Waveform data are recorded by the Global Digital Seismograph Network (GDSN) and by the International Federation of Digital Seismograph Networks (FDSN) stations, and archived and distributed by the Incorporated Research Institutions for Seismology-Data Management Center (IRIS-DMC). Earthquake hypocenters are taken from the USGS-NEIC earthquake catalogue. Tsunami waves and their interaction with various topographies were numerically modeled using the SWAN code (Mader 1988). ArcMap tools (ESRI 2010) were used to prepare initial wave height and tsunami simulation figures. We would like to thank Alessandro Annunziato for sharing the Tsunami Analysis Tool (TAT) (Annunziato 2007). We appreciate much judicial evaluations of Alexander B. Rabinovich, Fred Stephenson, anonymous referees and beneficial discussions with Tuna Eken to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Yolsal-Çevikbilen.

Appendix

Appendix

In the Appendix, we presented tsunami simulation results based on preliminary finite-fault slip distribution models reported by the USGS (2012b, 2015b) for the October 28, 2012 Haida Gwaii (Canada) and the September 16, 2015 Illapel (Chile) earthquakes. We further compared the calculated tsunami wave elevations from numerical tsunami simulations based on finite-fault slip distribution models of earthquakes obtained by (a) this study and (b) USGS (2012b, 2015b) with the observed data.

We also provided two tables showing the general information on DART and tide gauge stations. This section consists of four Appendix figures and two tables with captions (see Figs. 19, 20, 21, 22; Tables 3, 4).

Table 3 List of DART buoys used in this study (NDBC 2012, 2015)
Table 4 List of tide gauge stations used in this study (SLSMF 2012, 2015; PSMSL 2012, 2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yolsal-Çevikbilen, S., Ulutaş, E. & Taymaz, T. Source Models of the 2012 Haida Gwaii (Canada) and 2015 Illapel (Chile) Earthquakes and Numerical Simulations of Related Tsunamis. Pure Appl. Geophys. 176, 2995–3033 (2019). https://doi.org/10.1007/s00024-018-1996-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1996-5

Keywords

Navigation