Skip to main content
Log in

Wavefield Polarization in Fault Zones of the Western Flank of Mt. Etna: Observations and Fracture Orientation Modelling

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Ambient noise measurements performed on the western flank of Mt. Etna are analyzed to infer the occurrence of directional amplification effects in fault zones. The data were recorded along short (<500 m) profiles crossing the Ragalna Fault System. Ambient noise records were processed to compute the horizontal-to-vertical noise spectral ratio as a function of frequency and direction of motion. Wavefield polarization was investigated in the time–frequency domain as well. Peaks of the spectral ratios generally fall in the frequency band 1.0–6.0 Hz pointing out directional amplifications that are also confirmed by the results of the time–frequency analysis, the largest amplification occurring with high angle to the fault strike. A variation of the frequency of the spectral peak is observed between the two sides of the fault, possibly related to a damage fault asymmetry. Measurements performed several kilometers away from the fault zone do not show behavior that is as systematic as in the fault zone, and this suggests that the observed directional effects can be ascribed to the fault fabric. We relate the polarization effect to compliance anisotropy in the fault zone, where the presence of predominantly oriented fractures makes the normal component of ground motion larger than the transversal one. In order to test the direction and the type of fractures that are expected in the fault zone, we modeled the brittle deformation pattern of the investigated fault. Theoretical results are in good agreement with field observations of the fracture strike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acocella, V., Behncke, B., Neri, M., and D’Amico, S. (2003), Link between major flank slip and eruptions at Mt. Etna (Italy), Geophys. Res. Lett., 30(24), doi:10.1029/2003GL018642.

  • Alparone, S., Barberi, G., Bonforte, A., Maiolino, V., and Ursino, A. (2011), Evidence of multiple strain fields beneath the eastern flank of Mt. Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 20032004, Bull. Volcanol. 7, 869–885, doi:10.1007/s00445-011-0456-1.

  • Azzaro, R. (1999), Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics, J. Geodyn., 28, 193– 213, doi:10.1016/S0264-3707(98)00037-4.

  • Azzaro, R., Mattia, M., and Puglisi, G. (2001), Fault creep and kinematics of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic observation and their tectonic significance, Tectonophys. 333, 401–415.

  • Azzaro, R., Branca, S., Gwinner, K., and Coltelli, M. (2012), The volcano-tectonic map of Etna volcano, 1:100.000 scale: an integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data, Ital. J. Geosci. 131(1), 153–170. doi:10.3301/IJG.2011.29.

  • Barreca, G., Bonforte, A., and Neri, M. (2013), A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation, J. Volcanol. Geotherm. Res. 251(1), 170–186, doi:10.1016/j.jvolgeores.2012.08.013.

  • Ben-Zion, Y. (1998), Properties of seismic fault zone waves and their utility for imaging low-velocity structures, J. Geophys. Res., 103(B6), 12567–12585.

  • Ben-Zion, Y., and Aki, K. (1990), Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. seism. Soc. Am. 80, 971–994.

  • Bonforte, A., Bonaccorso, A., Guglielmino, F., Palano. M., and Puglisi, G. (2008), Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles, J. Geophys. Res. 113, B05406, doi:10.1029/2007JB005334.

  • Bonforte, A., Federico, C., Giammanco, S., Guglielmino, F., Liuzzo, M., and Neri, M. (2013), Soil gases and SAR data reveal hidden faults on the sliding flank of Mt. Etna (Italy), J. Volcan. Geotherm. Res. 251, 27–40, doi:10.1016/j.volgeores.2012.08.010.

  • Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A., and Puglisi, G. (2011), Structural assessment of Mt. Etna volcano from Permanent Scatterers analysis, Geochemistry, Geophysics, Geosystems 12(2), Q02002, doi:10.1029/2010GC003213.

  • Borgia, A., Lanari, R., Sansosti, E., Tesauro, M., Berardino, P., Fornaro, G., Neri, M., and Murray, J.B. (2000), Actively growing anticlines beneath Catania from the distal motion of Mount Etna’s decollement measured by SAR interferometry and GPS, Geophys. Res. Lett., 27(20), 3409–3412, doi:10.1029/1999GL008475.

  • Branca, S., Coltelli, M., Gropelli, G., and Lentini, F. (2011), Geological map of Etna volcano, 1:50000 scale, Ital. J. Geosci. 130(3), 265–291.

  • Burjánek, J., Gassner-Stamm, G., Poggi, V., Moore, J. R., and Fäh, D. (2010), Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180, 559–569, doi:10.1111/j.1365-246X.2009.04451.x.

  • Burjánek, J., Moore, J. R., Molina, F.X.Y., and Fäh, D. (2012), Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int., 188(2), 559–569, doi:10.1111/j.1365-246X.2011.05272.x.

  • Calderoni, G., Rovelli, A., and Di Giovambattista, R. (2010), Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: evidence for a complex fault-induced site effect, Geophys. Res. Lett. 37, L24305, doi:10.1029/2010GL045697.

  • Cultrera, G., Rovelli, A., Mele, G., Azzara, R., Caserta, A., and Marra, F. (2003), Azimuth dependent amplification of weak and strong ground motions within a fault zone, Nocera Umbra, Central Italy, J. Geophys. Res. 108(B3), 2156–2170, doi:10.1029/2002JB001929.

  • Di Giacomo, D., Gallipoli, M.R., Mucciarelli, M., Parolai, S., and Richwalski, S.M. (2005), Analysis and modeling of HVSR in the presence of a velocity inversion: the case of Venosa, Italy, Bull. Seism. Soc. Am. 95(6), 2364–2372, doi:10.1785/0120040242.

  • Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G., and Rigano, R. (2009), Evidence for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy, J. Geophys. Res., 114, doi:10.1029/2009JB006393.

  • Dor, O., Rockwell, T. K., Ben-Zion, Y. (2006), Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in southern California: A possible indictor for preferred rupture propagation direction, Pure Appl. Geophys., 163, 301–349.

  • Duan, B. (2008), Asymmetric off-fault damage generated by bilateral ruptures along a bimaterial interface, Geophys. Res. Lett. 35, L14306, doi:10.1029/2008GL034797.

  • Falsaperla, S., Cara, F., Rovelli, A., Neri, M., Behncke, B., and Acocella, B. (2010), Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: the missing link? J. Geophys. Res. 115, B11306, doi:10.1029/2010JB007529.

  • Froger, J.L., Merle, O., and Briole, P. (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett. 187, 245–258, doi:10.1016/S0012-821X(01)00290-4.

  • Griffith, W.A., Sanz, P.F., and Pollard, D.D. (2009), Influence of outcrop scale fractures on the effective stiffness of fault damage zone rocks, Pure Appl. Geophys., 166, 1595–1627.

  • Kulesh, M., Diallo, M.S., Holschneider, M., Kurennaya, K., Kruger, F., Ohrberger, M., and Scherbaum, F. (2007), Polarization analysis in the wavelet domain based on adaptive covariance method, Geophys. J. Int. 170(2), 667–678, doi:10.1111/j.1365-246X.2007.03417.x.

  • Lewis, M.A., Peng, Z., Ben-Zion, Y. and Vernon, F.L. (2005), Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California, Geophys. J. Int., 162, 867–881, doi:10.1111/j.1365-246X.2005.02684.x.

  • Lewis, M., and Ben-Zion, Y. (2010), Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms, Geophys. J. Int., 183(3), 1579–1595, doi:10.1111/j.1365-246X.2010.04816.x.

  • Li, Y.G., and Leary, P. C. (1990), Fault zone trapped seismic waves, Bull. Seismol. Soc. Am., 80, 1245–1271.

  • Li, Y. G., Leary, P. C., Aki, K. and Malin, P. (1990), Seismic trapped modes in the Oroville and San Andreas fault zones, Science, 249, 763– 765, doi:10.1126/science.249.4970.763.

  • Li, Y.G., Aki, K., Adams, D., Hasemi, A., and Lee, W.H.K. (1994), Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992, J. Geophys. Res. 99, 11705–11722.

  • Lo Giudice, E., and Rasà, R. (1992), Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as example, Tectonophysics 202, 257–268.

  • McGuire, W.J., and Pullen, A.D. (1989), Location and orientation of eruptive fissures and feeder-dykes at Mount Etna: influence of gravitational and regional stress regimes, J. Volcanol. Geotherm. Res. 38, 325–344.

  • Mizuno, T., and Nishigami, K. (2004), Deep structure of the Mozumi-Sukenobu fault, central Japan, estimated from the subsurface array observation of fault zone trapped waves, Geophys. J. Int., 159(2), 622–642, doi:10.1111/j.1365-246X.2004.02458.x.

  • Monaco, C., Tapponnier, P., Tortorici, L., and Gillot, P.Y. (1997), Late Quaternary slip rates on the AcirealePiedimonte normal faults and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett. 147, 125–139.

  • Monaco, C., De Guidi, G., and Ferlito, C. (2010), The Morphotectonic map of Mt. Etna, Ital. J. Geosci., 129, 3, 408–428.

  • Neri, M., Gardũno, V.H., Pasquarè, G., and Rasà, R. (1991), Studio strutturale e modello cinematico della Valle del Bove e del settore nord-orientale etneo, Acta Vulcanologica, 1, 17–24 (in Italian).

  • Neri, M., Acocella, V., and Behncke, B. (2004), The role of the Pernicana Fault System in the spreading of Mt. Etna (Italy) during the 20022003 eruption, Bull. Volcanol. 66, 417–430, doi:10.1007/s00445-003-0322-x.

  • Neri, M., Guglielmino, F., and Rust, D. (2007), Flank instability on Mount Etna: Radon, radar interferometry, and geodetic data from the southwestern boundary of the unstable sector, J. Geophys. Res., 112, B04410, doi:10.1029/2006JB0047.

  • Neri, M., Casu, F., Acocella, V., Solaro, G., Pepe, S., Berardino, P., Sansosti, E., Caltabiano, T., Lundgren, P., and Lanari, R. (2009), Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations, Geophy. Res. Lett. 36(2), L02309, doi:10.1029/2008GL036151.

  • Panzera, F., D’Amico, S., Lotteri, A., Galea, P., and Lombardo, G. (2012), Seismic site response of unstable steep slope using noise measurements: the case study of Xemxija bay area, Malta, Nat. Haz, Earth Sci. 12, 3421–3431, doi:10.5194/nhess-12-3421-2012.

  • Panzera, F., Lombardo, G., and Muzzetta, I. (2013), Evaluation of buildings dynamical properties through in situ experimental techniques and 1D modelling: the example of Catania, Italy, J. Phys. Chem. Earth, doi:10.1016/j.pce.2013.04.00.

  • Panzera, F., Lombardo, G., and Rigano, R. (2011 a), Evidence of topographic effects analysing ambient noise measurements: the study case of Siracusa, Italy, Seismol. Res. Lett. 82(3), 385–391, doi:10.1785/gssrl.82.3.385.

  • Panzera, F., Rigano, R., Lombardo, G., Cara, F., Di Giulio, G., Rovelli, A. (2011b), The role of alternating outcrops of sediments and basaltic lavas on seismic urban scenario: the study case of Catania, Italy, Bulletin of Earthquake Engineering 9(2), 411–439. doi:10.1007/s10518-010-9202-x.

  • Peng, Z., and Ben-Zion, Y. (2006), Temporal changes of shallow seismic velocity around the Karadere-Duzce Branch of the North Anatolian Fault and strong ground motion, Pure Appl. Geophys. 163, 567–600.

  • Pischiutta, M., Cultrera, G., Caserta, A., Luzi, L., and Rovelli, A. (2010), Topographic effects on the hill of Nocera Umbra, central Italy, Geoph. J. Inter., 182(2), 977–987, doi:10.1111/j.1365-246X.2010.04654.x.

  • Pischiutta, M., Salvini, F., Fletcher, J., Rovelli, A., and Ben-Zion, Y. (2012), Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks, Geophys. J. Int., 188(3), 1255–1272, doi:10.1111/j.1365-246X.2011.05319.x.

  • Pischiutta, M., Rovelli, A., Salvini, F., Di Giulio, G., and Ben-Zion, Y. (2013a), Directional resonance variations across the Pernicana Fault, Mt. Etna, in relation to brittle deformation fields, Geophys. J. Int., 193(2), 986–996, doi:10.1093/gji/ggt031.

  • Pischiutta, M., Anselmi, M., Cianfarra, P. Rovelli, A., and Salvini, F. (2013b), Directional site effects in a non-volcanic gas emission area (Mefite d’Ansanto, southern Italy): Evidence of a local transfer fault transversal to large NWSE extensional faults? J. Phys. Chem. Earth, 116–123, doi:10.1016/j.pce.2013.03.008.

  • Pischiutta, M., Pastori, M., Improta, L., Salvini, F., and Rovelli, A. (2014), Orthogonal relation between wavefield polarization and fast S-wave direction in the Val d’Agri region: an integrating method to investigate rock anisotropy, J. Geophys. Res, 119, 1–13, doi:10.1002/2013JB010077.

  • Place, J., Blake, O., Rietbrock. A., and Faulkner, D. (2014), Wet fault or dry fault? A laboratory approach to monitor at distance the hydromechanical state of a discontinuity using controlled source seismics, Pure Appl. Geophys, this volume.

  • Rasà, R., Romano, R., and Lo Giudice, E. (1981), Morphotectonic map of Mt. Etna, 1:100.000 scale, Progetto Finalizzato Geodinamica, Istituto Internazionale di Vulcanologia, CNR, Catania, Italy.

  • Rigano, R., Cara, F., Lombardo, G., and Rovelli, A. (2008), Evidence of ground motion polarization on fault zones of Mount Etna volcano, J. Geophys. Res. 113, B10306, doi:10.1029/2007-JB005574.

  • Romano, R., Sturiale, C., and Lentini, F. (1979), Geological map of Mt. Etna, 1:50.000 scale, Progetto Finalizzato Geodinamica, Istituto Internazionale di Vulcanologia, CNR, Catania, Italy.

  • Rovelli, A., Caserta, A., Marra, F., and Ruggiero, V. (2002), Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. Seism. Soc. Am., 92(6), 2217–2232, doi:10.1785/0120010288.

  • Rust, D., and Neri, M. (1996), The boundaries of large-scale collapse on the flanks of Mount Etna, Sicily. In: Volcano Instability on the Earth and Other Planets, edited by W.M. McGuire, A.P. Jones and J. Neuberg, Spec. Pub. Geol. Soc. London, 110, 193–208.

  • Salvini, F., Billi, A., and Wise, D.U. (1999), Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy, J. Struct. Geol., 21, 1731–1749.

  • Seeber, L., Armbruster, J. G., Ozer, N., Aktar, M., Baris, S., Okaya, D., Ben-Zion, Y., and Field, E. (2000), The 1999 Earthquake Sequence along the North Anatolia Transform at the Juncture between the Two Main Ruptures, in The 1999 Izmit and Duzce Earthquakes: preliminary results, Edited by Barka A., Kazaci, O., Akyuz, S., and Altunel, E., Istanbul Technical University, 209–223.

  • SESAME (2004), Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: Measurements, processing and interpretation, SESAME European Research Project WP12, deliverable D23.12, at http://sesame-fp5.obs.ujf-grenoble.fr/Deliverables, 2004.

  • Solaro, G., Acocella, V., Pepe, S., Ruch, J., Neri, M., and Sansosti, E. (2010), Anatomy of an unstable volcano from InSAR: multiple processes affecting flank instability at Mt. Etna, 19942008, J. Geophys. Res., 115, B10405, doi:10.1029/2009JB000820.

  • Spudich, P., Hellweg, M., and Lee, W.H.K. (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implications for mainshock motions, Bull. Seism. Soc. Am., 86(1B), S193–S208.

  • Spudich, P., and Olsen, K.B. (2001), Fault zone amplified waves as a possible seismic hazard along the Calaveras Fault in central California, Geophys. Res. Lett. 28(13), 2533–2536, doi:10.1029/2000GL011902.

  • Vidale, J.E. (1986), Complex polarization analysis of particle motion. Bull. Seism. Soc. Am. 76, 1393–1405.

Download references

Acknowledgments

The authors are grateful to Dr. J. Burjánek for having kindly provided access to the time–frequency (TF) polarization analysis software and for useful explanations. The authors also wish to thank anonymous reviewers and the Guest Editor Prof. Yehuda Ben-Zion for constructive comments that contributed to improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Panzera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panzera, F., Pischiutta, M., Lombardo, G. et al. Wavefield Polarization in Fault Zones of the Western Flank of Mt. Etna: Observations and Fracture Orientation Modelling. Pure Appl. Geophys. 171, 3083–3097 (2014). https://doi.org/10.1007/s00024-014-0831-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0831-x

Keywords

Navigation