Skip to main content
Log in

Global Existence of Martingale Solutions and Large Time Behavior for a 3D Stochastic Nonlocal Cahn–Hilliard–Navier–Stokes Systems with Shear Dependent Viscosity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider a stochastic version of a nonlinear system which consists of the incompressible Navier–Stokes equations with shear dependent viscosity controlled by a power \(p>2\), coupled with a convective nonlocal Cahn–Hilliard-equations. This is a diffuse interface model which describes the motion of an incompressible isothermal mixture of two (partially) immiscible fluid having the same density. We prove the existence of a weak martingale solutions when \(p\in [11/5,12/5)\), and their exponential decay when the time goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  4. Bensoussan, A., Temam, R.: Équations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 95–222 (1973)

    MATH  Google Scholar 

  5. Biskamp, D.: Magnetohydrodynamical Turbulence. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  6. Caraballo, T., Langa, J.A., Taniguchi, T.: The exponential behavior and stabilizability of stochastic 2D-Navier–Stokes equations. J. Differ. Equ. 179(2), 714–737 (2002)

    ADS  MATH  Google Scholar 

  7. Caraballo, T., Márquez-Durán, A.M., Real, J.: The asymptotic behaviour of a stochastic 3D LANS-\(\alpha \) model. Appl. Math. Optim. 53(2), 141–161 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Chen, C.K., Fife, P.C.: Nonlocal moels of phase transitions in solids. Adv. Math. Sci. Appl. 10, 821–849 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    ADS  MATH  Google Scholar 

  10. Colli, P., Frigeri, S., Grasselli, M.: Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Math. Anal. Appl. 386(1), 428–444 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Prato, G.Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Vol. 152 of Encyclopedia of Mathematics and Its Applications, 2nd edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  12. Deugoué, G., Ngana, A.N., Medjo, T.T.: On the strong solutions for a stochastic 2D nonlocal Cahn–Hilliard–Navier–Stokes model. Dyn. PDE 17(1), 19–60 (2020)

    MATH  Google Scholar 

  13. Deugoué, G., Ngana, A.N., Medjo, T.T.: Martingale solutions to stochastic nonlocal Cahn–Hilliard–Navier–Stokes equations with multiplicative noise of jump type. Phys. D 398, 23–68 (2019)

    MathSciNet  Google Scholar 

  14. Feng, X.: Fully discrete finite element approximation of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Frigeri, S., Grasselli, M., Pražák, D.: Nonlocal Cahn–Hilliard–Navier–Stokes systems with shear dependent viscosity. J. Math. Anal. Appl. 459, 753–777 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Frigeri, S., Grasselli, M.: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26(4), 847–893 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Frigeri, S., Grasselli, M.: Global and trajectory attractors for a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Dyn. Differ. Equ. 24(4), 827–856 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Frigeri, S., Grasselli, M.: Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials. Dyn. Partial Differ. Equ. 9(4), 273–304 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Frigeri, S., Grasselli, M., Krejčí, P.: Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems. J. Differ. Equ. 255(9), 2587–2614 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Gal, C.G., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Differ. Equ. 263(9), 5253–5297 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 401–436 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Gal, C.G., Grasselli, M.: Trajectory attractors for binary fluid mixtures in 3D. Chin. Ann. Math. Ser. B 31, 655–678 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87, 37–61 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions, II; Phase motion. SIAM J. Appl. Math. 58, 1707–1729 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Heida, M., Málek, J., Rajagopal, K.R.: On the development and generalizations of Cahn–Hilliard equations within a ther-modynamic framework. Z. Angew. Math. Phys. 63(1), 145–169 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Volume 24 of North-Holland Mathematical Library, 2nd edn. North-Holland Publishing Co., Amsterdam (1989)

    Google Scholar 

  28. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interface Free Bound 10, 5–43 (2008)

    MathSciNet  Google Scholar 

  29. Kupiainen, A.: Statistical theories of turbulence. In: Wehr, J. (ed.) Random Media 2000. Wydawnictwa ICM, Warszawa (2004)

    Google Scholar 

  30. Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Math. Sci. 16(4), 1233–1277 (1981)

    MATH  Google Scholar 

  31. Kushner, H.J.: Numerical Methods for Controlled Stochastic Delay Systems. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  32. Kallenberg, O.: Foundations of Modern Probability. Probability and Its Applications (New York). Springer, New York (1997)

    MATH  Google Scholar 

  33. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969)

  34. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction, Universitext. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-22354-4 (2015)

  35. Liu, C., Shen, J.: A phase model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier–Stokes equations and turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Métivier, M.: Semimartingales: A course on Stochastic Processes. De Gruyter Studies in Mathematics, vol. 2. Walter de Gruyter, Berlin (1982)

    Google Scholar 

  38. Métivier, M.: Stochastic Partial Differential Equations in Infinite Dimensional Spaces. Scuola Normale Superiore, Pisa (1988)

    MATH  Google Scholar 

  39. Málek, J., Necas, J., Ruzicka, M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case \(p\ge 2\). Adv. Differ. Equ. 6(3), 257–302 (2001)

    MATH  Google Scholar 

  40. Pardoux, E.: Equations aux Dérivées partielles Stochastiques Monotones. Université Paris-Sud, Thèse de Doctorat (1975)

  41. Pardoux, E.: Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3(2), 127–167 (1979)

    MathSciNet  MATH  Google Scholar 

  42. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, Volume 1905 of Lecture Notes in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  43. Parthasarathy, K.R.: Probability Measures on Metric Spaces, Volume 3 of Probability and Mathematical Statistics. Academic Press, New York (1967)

    Google Scholar 

  44. Roubiăek, T.: Nonlinear Partial Differential Equations with Applications. International Series of Numerical Mathematics, vol. 153. Birkhäuser, Basel (2013)

    Google Scholar 

  45. Razafimandimby, P.A., Sango, M.: Existence and large time behavior for a stochastic model of modified magnetohydrodynamic equations. Z. Angew. Math. Phys. 66, 2197–2235 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Rowlinson, J.S.: Translation of J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of continuous variation of density. J. Stat. Phys. 20, 197–244 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Annali Mat. Pura Appl. 146(4), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  48. Strauss, W.A.: On continuity of functions with values in various Banach spaces. Pac. J. Math. 19, 543–551 (1966)

    MathSciNet  MATH  Google Scholar 

  49. Skorokhod, A.V.: Studies in the Theory of Random Processes. Translated from the Russian by Scripta Technica. Addison Wesley Publishing Co., Reading, MA (1965)

  50. Skorohod, A.V.: Limits theorem for stochastic processes. Teorija Verojatnosteii Primenenija 1, 289–319 (1956)

    MathSciNet  Google Scholar 

  51. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2, 3rd edn. North-Holland, Amsterdam (1984)

    Google Scholar 

  52. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/A Linear Monotone Operators. Springer, New York (1990)

    MATH  Google Scholar 

  53. Zhao, L., Wu, H., Huang, H.: Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids. Commun. Math. Sci. 7(4), 939–962 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tachim Medjo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by F. Flandoli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deugoué, G., Ngana, A.N. & Medjo, T.T. Global Existence of Martingale Solutions and Large Time Behavior for a 3D Stochastic Nonlocal Cahn–Hilliard–Navier–Stokes Systems with Shear Dependent Viscosity. J. Math. Fluid Mech. 22, 46 (2020). https://doi.org/10.1007/s00021-020-00503-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00503-9

Keywords

Navigation