Skip to main content
Log in

The Integral Formula for Pressure Field in the Nonstationary Barotropic Flows of Viscous Fluid

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

An integral expression of pressure via dynamical characteristics of the vortex and velocity fields for viscous fluid is presented. This expression may be considered as an analog (or generalization) of the Bernoulli equation for nonstationary vortex flows of ideal or viscous fluids, including the case of an external nonconservative mass force. The presented formulas are useful for calculating the pressure field when meshless vortex methods are applied for the flow simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, P.R., Guvernyuk, S.V., Dynnikova, G.Ya.: Vortex methods for unsteady hydrodynamical forces calculation (in russian). M., MSU (2006)

  2. Andronov P.R., Guvernyuk S.V., Grigorenko D.A., Dynnikova G.Ya.: Numerical simulation of plate autorotation in a viscous fluid flow. Fluid Dyn. 42(5), 719–730 (2007)

    Article  ADS  MATH  Google Scholar 

  3. Aparinov A.A., Setukha A.V.: Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments. Zh. Vychisl. Mat. Mat. Fiz. 50(5), 937–948 (2010)

    MATH  MathSciNet  Google Scholar 

  4. Barba L.A., Leonard A., Allen C.B.: Advances in viscous vortex methods-meshless spatial adaption based on radial basis function interpolation. Int. J. Numer. Methods Fluids 47, 387–421 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Belotserkovsky S.M., Lifanov I.K.: Method of Discrete Vortices. CRC Press, Boca Raton (1993)

    Google Scholar 

  6. Cottet G.H., Koumoutsakos P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  7. Dynnikova G.Ya.: An analog of the Bernoulli and Cauchy-Lagrange integrals for a time-dependent vortex flow of an ideal incompressible fluid. Fluid Dyn. 35(1), 24–32 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Dynnikova G.Ya.: Vortex motion in two-dimensional viscous fluid flows. Fluid Dyn. 38(5), 670–678 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Kamemoto K.: On contribution of advanced vortex element methods toward virtual reality of unsteady vortical flows in the new generation of cfd. Braz. Soc. Mech. Sci. Eng. 4, 368–378 (2004)

    Google Scholar 

  10. Ivanova, O.A.: Numerical simulation of wind induced conductor motion. In: Fifth International Conference on Vortex Flow and Vortex Methods, 8–10 November 2010 San Leucio-(CE), Italy (2010)

  11. Loitsianskii, L.G.: Fluid and gas mechanics (in russian). M. Science (1978)

  12. Marchevsky, I.K., Scheglov, G.A.: 3D aeroelastic beam dynamics simulation using vortex element method. In: Fifth International Conference on Vortex Flow and Vortex Methods, 8–10 November 2010, San Leucio-(CE), Italy (2010)

  13. Morse P.M., Feshbach H.: Methods of Theoretical physics. Mcgraw-Hill, New York (1953)

    MATH  Google Scholar 

  14. Ogami Y., Akamatsu T.: Viscous flow simulation using the discrete vortex method—the diffusion velocity method. Comput. Fluids 19(3), 433–441 (1991)

    Article  MATH  Google Scholar 

  15. Rosenhead L.: The spread of vorticity in the wake behind f cylinder. Proc. R. Soc. Ser. A 127, 590–612 (1930)

    Article  ADS  MATH  Google Scholar 

  16. Uhlman, J.S. Jr.: An integral equation formulation of the equations of motion of an incompressible fluid. Technical Report 10086, NUWC-NTP (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Dynnikova.

Additional information

Communicated by A. V. Fursikov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dynnikova, G.Y. The Integral Formula for Pressure Field in the Nonstationary Barotropic Flows of Viscous Fluid. J. Math. Fluid Mech. 16, 145–162 (2014). https://doi.org/10.1007/s00021-013-0148-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0148-z

Keywords

Navigation