Skip to main content
Log in

Toeplitz Operators with Special Symbols on Segal–Bargmann Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study the boundedness of Toeplitz operators on Segal–Bargmann spaces in various contexts. Using Gutzmer’s formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal–Bargmann spaces associated to Riemannian symmetric spaces of compact type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger C.A., Coburn L.A.: Heat flow and Berezin–Toeplitz estimates. Am. J. Math. 3, 563–590 (1994)

    Article  MathSciNet  Google Scholar 

  3. Byun D.-W.: Inversions of Hermite semigroup. Proc. Am. Math. Soc. 118, 437–445 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Daubechies I.: On the distributions corresponding to bounded operators in the Weyl quantisation. Commun. Math. Phys. 75, 229–238 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faraut, J.: Espaces Hilbertiens invariant de fonctions holomorphes, Seminaires et Congres 7(2003), Societe Math. France, 101–167

  6. Faraut, J.: Analysis on the crown of a Riemannian symmetric space, pp. 99–110 in Lie groups and symmetric spaces. In: Amer. Math. Soc. Transl. Ser.2, vol. 210 , American Mathematical Society, Providence (2003)

  7. Folland G.B.: Harmonic Analysis on Phase space. Princeton University Press, Princeton (1989)

    Google Scholar 

  8. Gangolli R.: Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces. Acta Math. 121, 151–192 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grudsky S.M., Vasilevski N.L.: Toeplitz operators on the Fock space: radial component effects. Integr. Equ. Oper. Theory 44, 10–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hall B.: The Segal–Bargmann “coherent state” transform for compact Lie groups. J. Funct. Anal. 122(1), 103–151 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hall B., Lewkeeratiyutkul W.: Holomorphic Sobolev spaces and the generalised Segal–Bargmann transform. J. Funct. Anal. 217, 192–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hall B.: Berezin-Toeplitz quantization on Lie groups. J. Funct. Anal. 255, 2488–2506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Helgason S.: Groups and Geometric Analysis, vol 83. American Mathematical Society, Providence (2002)

    Google Scholar 

  14. Hille E.: A class of reciprocal functions. Ann. Math. 27, 427–464 (1926)

    Article  MathSciNet  Google Scholar 

  15. Krötz B., Thangavelu S., Xu Y.: The heat kernel transform for the Heisenberg group. J. Funct. Anal. 225(2), 301–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krötz, B., Olafsson, G., Stanton, R.: The image of the heat kernel transform on Riemannian symmetric spaces of noncompact type. Int. Math. Res. Notes, 22 1307–1329 (2005)

    Article  Google Scholar 

  17. Lassalle M.: Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Sci. ’Ecole Norm. Sup. (4) 11(2), 167–210 (1978)

    MathSciNet  MATH  Google Scholar 

  18. Lassalle M.: L’espace de Hardy d’un domaine de Reinhardt généralisé. J. Funct. Anal. 60(3), 309–340 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stenzel M.: The Segal–Bargmann transform on a symmetric space of compact type. J. Funct. Anal. 165, 44–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Szegö G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, Providence (1967)

    Google Scholar 

  21. Thangavelu, S.: Harmonic analysis on the Heisenberg group. In: Programme in Mathematics, vol. 159, Birkhäuser, Boston (1998)

  22. Thangavelu S.: Gutzmer’s formula and Poisson integrals on the Heisenberg group. Pacific J. Math. 231, 217–238 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thangavelu, S.: Hermite and Laguerre semigroups: some recent developments. Seminaires et Congres (to appear)

  24. Thangavelu S.: An analogue of Gutzmer’s formula for Hermite expansions. Studia Math. 185(3), 279–290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thangavelu S.: Lectures on Hermite and Laguerre expansions. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  26. Thangavelu, S.: An introduction to the uncertainty principle: Hardy’s theorem on Lie groups. In: Progress in Mathematics, vol. 217, Birkhäuser, Boston (1998)

  27. Thangavelu S.: Holomorphic Sobolev spaces associated to compact symmetric spaces. J. Funct. Anal. 251, 438–462 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thangavelu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jotsaroop, K., Thangavelu, S. Toeplitz Operators with Special Symbols on Segal–Bargmann Spaces. Integr. Equ. Oper. Theory 69, 317–346 (2011). https://doi.org/10.1007/s00020-010-1846-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1846-z

Mathematics Subject Classification (2010)

Keywords

Navigation