Skip to main content
Log in

Topology and Smooth Structure for Pseudoframes

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Given a closed subspace \({\mathcal{S}}\) of a Hilbert space \({\mathcal{H}}\), we study the sets \({\mathcal{F}_\mathcal{S}}\) of pseudo-frames, \({\mathcal{C}\mathcal{F}_\mathcal{S}}\) of commutative pseudo-frames and \({\tiny{\mathfrak{X}}_{\mathcal{S}}}\) of dual frames for \({\mathcal{S}}\), via the (well known) one to one correspondence which assigns a pair of operators (F, H) to a frame pair \({(\{f_n\}_{n\in\mathbb{N}},\{h_n\}_{n\in\mathbb{N}})}\),

$$F:\ell^2\to\,\mathcal{H}, \quad F\left(\{c_n\}_{n\in\mathbb{N}} \right)=\sum_n c_n f_n,$$

and

$$H:\ell^2 \to\,\mathcal{H}, \quad H=(\{c_n\}_{n\in\mathbb{N}})=\sum_n c_n h_n.$$

We prove that, with this identification, the sets \({\mathcal{F}_\mathcal{S}}\), \({\mathcal{C}\mathcal{F}_\mathcal{S}}\) and \({\tiny{\mathfrak{X}}_{\mathcal{S}}}\) are complemented submanifolds of \({\mathcal{B}(\ell^2,\mathcal{H})\times \mathcal{B}(\ell^2,\mathcal{H})}\). We examine in more detail \({\tiny{\mathfrak{X}}_{\mathcal{S}}}\), which carries a locally transitive action from the general linear group GL( 2). For instance, we characterize the homotopy theory of \({\tiny{\mathfrak{X}}_{\mathcal{S}}}\) and we prove that \({\tiny{\mathfrak{X}}_{\mathcal{S}}}\) is a strong deformation retract both of \({\mathcal{F}_\mathcal{S}}\) and \({\mathcal{C}\mathcal{F}_\mathcal{S}}\) ; therefore these sets share many of their topological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruchow E., Corach G., Stojanoff D.: Geometry of the sphere of a Hilbert module. Math. Proc. Camb. Phil. Soc. 127, 295–315 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andruchow E., Antezana J., Corach G.: Sampling formulae and optimal factorizations of projections. Sampl. Theory Signal Image Process. 7, 291–309 (2008)

    MathSciNet  Google Scholar 

  3. Balan R., Casazza P.G., Heil C., Landau Z.: Excesses of Gabor frames. Appl. Comput. Harmon. Anal. 14, 87–106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Israel, A., Greville, T.N.E.: Generalized inverses, theory and applications, 2nd edn. In: CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15. Springer-Verlag, New York (2003)

  5. Campbell S.L., Meyer C.D. Jr.: Generalized Inverses of Linear Transformations. Corrected reprint of the 1979 original. Dover, New York (1991)

    MATH  Google Scholar 

  6. Christensen O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  7. Christensen O., Eldar Y.: Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17, 48–68 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christensen O., Eldar Y.C.: Generalized shift-invariant systems and frames for subspaces. J. Fourier Anal. Appl. 11, 299–313 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Corach G., Maestripieri A., Mbekhta M.: Metric and homogeneous structure of closed range operators. J. Operator Theory 61, 171–190 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Corach G., Pacheco M., Stojanoff D.: Geometry of epimorphisms and frames. Proc. Am. Math. Soc. 132, 2039–2049 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Corach G., Porta H., Recht L.: Differential geometry of spaces of relatively regular operators. Integr. Equ. Oper. Theory 13, 771–794 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, xx+357 pp (1992). ISBN: 0-89871- 274-2

  13. Duffin R.J., Schaeffer A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    MATH  MathSciNet  Google Scholar 

  14. Eldar Y.C.: Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl. 9, 77–96 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eldar Y.C., Werther T.: General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets Multiresolution Inf. Process. 3, 347–359 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gramsch B.: Relative Inversions in der Störungstheorie von Operatoren und ψ-algebren. Math. Ann. 269, 27–71 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heil C.E., Walnut D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628–666 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuiper N.H.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19–30 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  19. Labrousse J.P., Mbekhta M.: Les opérateurs points de continuité pour la conorme et l’inverse de Moore-Penrose. Houston J. Math. 18, 7–23 (1992)

    MATH  MathSciNet  Google Scholar 

  20. Li S., Ogawa H.: Pseudo-duals of frames with applications. Appl. Comput. Harmon. Anal. 11, 289–304 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li S., Ogawa H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10, 409–431 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Munkres J.R.: Topology: A First Course. Prentice Hall, New Jersey (1975)

    MATH  Google Scholar 

  23. Nashed M.Z.: Generalized Inverses and Applications. Academic Press, London (1976)

    MATH  Google Scholar 

  24. Ogawa H., Berrached N.E.: A theory of extended pseudo-biorthogonal bases and its application to generalized sampling theorem. Contemp. Math. 190, 305–321 (1995)

    MathSciNet  Google Scholar 

  25. Ogawa H., Berrached N.E.: EPBOBs (extended pseudo-biorthogonal bases) for signal recovery. IEICE Trans. Inf. Syst. E83-D, 223–232 (2000)

    Google Scholar 

  26. Palais R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  27. Young R.M.: An Introduction to Nonharmonic Fourier Series, revised 1st edn. Academic Press, San Diego (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Andruchow.

Additional information

In memoriam Roberto Fontanarrosa

The first author partially supported by CONICET (PIP 5690); the second author partially supported by PICT 808 (ANPCYT), MTM-2008-05561-C02-02, 2009-SGR-1303; and the third author partially supported by UBACYT I030, CONICET (PIP 2083/00).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andruchow, E., Antezana, J. & Corach, G. Topology and Smooth Structure for Pseudoframes. Integr. Equ. Oper. Theory 67, 451–466 (2010). https://doi.org/10.1007/s00020-010-1812-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1812-9

Mathematics Subject Classification (2010)

Keywords

Navigation