Skip to main content
Log in

Functional effects of disease-associated variants reveal that the S1–M1 linker of the NMDA receptor critically controls channel opening

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The short pre-M1 helix within the S1–M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

3DMTR:

Three-dimensional missense tolerance

7-CKA:

7-chlorokynurenic acid

ABD:

Agonist binding domain

AP-5:

d,l-2-amino-5-phosphonovalerate

ASD:

Autism spectrum disorder

ATD:

Amino-terminal domain

CTD:

Carboxyl-terminal domain

LBD:

Ligand binding domain

MTSEA:

2-aminoethyl methanethiosulfonate hydrobromide

NMDAR:

N-methyl-d-aspartate receptor

NTD:

N-terminal domain

TEVC:

Two-electrode voltage clamp

TMD:

Transmembrane domain (M1–4)

τW :

Weighted deactivation tau

WT:

Wildtype

References

  1. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan HJ, Traynelis SF (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73(4):298–487. https://doi.org/10.1124/pharmrev.120.000131

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF (2020) Hodgkin–Huxley–Katz Prize Lecture: genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J Physiol. https://doi.org/10.1113/JP278086

    Article  PubMed  Google Scholar 

  3. Talukder I, Borker P, Wollmuth LP (2010) Specific sites within the ligand-binding domain and ion channel linkers modulate NMDA receptor gating. J Neurosci 30(35):11792–11804. https://doi.org/10.1523/Jneurosci.5382-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462(7274):745–756. https://doi.org/10.1038/nature08624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997. https://doi.org/10.1126/science.1251915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197. https://doi.org/10.1038/nature13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogden KK, Chen W, Swanger SA, McDaniel MJ, Fan LZ, Hu C, Tankovic A, Kusumoto H, Kosobucki GJ, Schulien AJ, Su Z, Pecha J, Bhattacharya S, Petrovski S, Cohen AE, Aizenman E, Traynelis SF, Yuan H (2017) Molecular mechanism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology. PLoS Genet 13(1):e1006536. https://doi.org/10.1371/journal.pgen.1006536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF (2018) A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 596(17):4057–4089. https://doi.org/10.1113/JP276093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amin JB, Moody GR, Wollmuth LP (2020) From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol. https://doi.org/10.1113/JP278705

    Article  PubMed  Google Scholar 

  10. Soto D, Olivella M, Grau C, Armstrong J, Alcon C, Gasull X, Santos-Gomez A, Locubiche S, Gomez de Salazar M, Garcia-Diaz R, Gratacos-Batlle E, Ramos-Vicente D, Chu-Van E, Colsch B, Fernandez-Duenas V, Ciruela F, Bayes A, Sindreu C, Lopez-Sala A, Garcia-Cazorla A, Altafaj X (2019) l-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal. https://doi.org/10.1126/scisignal.aaw0936

    Article  PubMed  Google Scholar 

  11. Perszyk RE, Kristensen AS, Lyuboslavsky P, Traynelis SF (2021) Three-dimensional missense tolerance ratio analysis. Genome Res 31(8):1447–1461. https://doi.org/10.1101/gr.275528.121

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chou TH, Tajima N, Romero-Hernandez A, Furukawa H (2020) Structural basis of functional transitions in mammalian NMDA receptors. Cell 182(2):357-371.e13. https://doi.org/10.1016/j.cell.2020.05.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hedegaard M, Hansen KB, Andersen KT, Brauner-Osborne H, Traynelis SF (2012) Molecular pharmacology of human NMDA receptors. Neurochem Int 61(4):601–609. https://doi.org/10.1016/j.neuint.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  14. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, Holloman CM, Golas G, Adams DR, Boerkoel CF, Gahl WA, Traynelis SF (2014) Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5:3251. https://doi.org/10.1038/ncomms4251

    Article  CAS  PubMed  Google Scholar 

  15. Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H (2017) Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol Pharmacol 91(4):317–330. https://doi.org/10.1124/mol.116.106781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. XiangWei W, Kannan V, Xu Y, Kosobucki GJ, Schulien AJ, Kusumoto H, Moufawad El Achkar C, Bhattacharya S, Lesca G, Nguyen S, Helbig KL, Cuisset JM, Fenger CD, Marjanovic D, Schuler E, Wu Y, Bao X, Zhang Y, Dirkx N, Schoonjans AS, Syrbe S, Myers SJ, Poduri A, Aizenman E, Traynelis SF, Lemke JR, Yuan H, Jiang Y (2019) Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain 142(10):3009–3027. https://doi.org/10.1093/brain/awz232

    Article  PubMed  PubMed Central  Google Scholar 

  17. Erreger K, Traynelis SF (2008) Zinc inhibition of rat NR1/NR2A N-methyl-d-aspartate receptors. J Physiol-London 586(3):763–778. https://doi.org/10.1113/jphysiol.2007.143941

    Article  CAS  PubMed  Google Scholar 

  18. Swanger SA, Chen W, Wells G, Burger PB, Tankovic A, Bhattacharya S, Strong KL, Hu C, Kusumoto H, Zhang J, Adams DR, Millichap JJ, Petrovski S, Traynelis SF, Yuan H (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 99(6):1261–1280. https://doi.org/10.1016/j.ajhg.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan H, Erreger K, Dravid SM, Traynelis SF (2005) Conserved structural and functional control of N-methyl-d-aspartate receptor gating by transmembrane domain M3. J Biol Chem 280(33):29708–29716. https://doi.org/10.1074/jbc.M414215200

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Zhang J, Tang W, Mizu RK, Kusumoto H, XiangWei W, Xu Y, Chen W, Amin JB, Hu C, Kannan V, Keller SR, Wilcox WR, Lemke JR, Myers SJ, Swanger SA, Wollmuth LP, Petrovski S, Traynelis SF, Yuan H (2019) De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases. Hum Mutat 40(12):2393–2413. https://doi.org/10.1002/humu.23895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K, Park AR, Spiegelman D, Dobrzeniecka S, Piton A, Tomitori H, Daoud H, Massicotte C, Henrion E, Diallo O, Group SD, Shekarabi M, Marineau C, Shevell M, Maranda B, Mitchell G, Nadeau A, D’Anjou G, Vanasse M, Srour M, Lafreniere RG, Drapeau P, Lacaille JC, Kim E, Lee JR, Igarashi K, Huganir RL, Rouleau GA, Michaud JL (2011) Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 88(3):306–316. https://doi.org/10.1016/j.ajhg.2011.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, Geider K, Laube B, Schwake M, Finsterwalder K, Franke A, Schilhabel M, Jahn JA, Muhle H, Boor R, Van Paesschen W, Caraballo R, Fejerman N, Weckhuysen S, De Jonghe P, Larsen J, Moller RS, Hjalgrim H, Addis L, Tang S, Hughes E, Pal DK, Veri K, Vaher U, Talvik T, Dimova P, Guerrero Lopez R, Serratosa JM, Linnankivi T, Lehesjoki AE, Ruf S, Wolff M, Buerki S, Wohlrab G, Kroell J, Datta AN, Fiedler B, Kurlemann G, Kluger G, Hahn A, Haberlandt DE, Kutzer C, Sperner J, Becker F, Weber YG, Feucht M, Steinbock H, Neophythou B, Ronen GM, Gruber-Sedlmayr U, Geldner J, Harvey RJ, Hoffmann P, Herms S, Altmuller J, Toliat MR, Thiele H, Nurnberg P, Wilhelm C, Stephani U, Helbig I, Lerche H, Zimprich F, Neubauer BA, Biskup S, von Spiczak S (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45(9):1067–1072. https://doi.org/10.1038/ng.2728

    Article  CAS  PubMed  Google Scholar 

  23. Redin C, Gerard B, Lauer J, Herenger Y, Muller J, Quartier A, Masurel-Paulet A, Willems M, Lesca G, El-Chehadeh S, Le Gras S, Vicaire S, Philipps M, Dumas M, Geoffroy V, Feger C, Haumesser N, Alembik Y, Barth M, Bonneau D, Colin E, Dollfus H, Doray B, Delrue MA, Drouin-Garraud V, Flori E, Fradin M, Francannet C, Goldenberg A, Lumbroso S, Mathieu-Dramard M, Martin-Coignard D, Lacombe D, Morin G, Polge A, Sukno S, Thauvin-Robinet C, Thevenon J, Doco-Fenzy M, Genevieve D, Sarda P, Edery P, Isidor B, Jost B, Olivier-Faivre L, Mandel JL, Piton A (2014) Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing. J Med Genet 51(11):724–736. https://doi.org/10.1136/jmedgenet-2014-102554

    Article  CAS  PubMed  Google Scholar 

  24. Helbig K, Hagman KF, Powis Z, Tang S, Helbig I (2016) Whole exome sequencing in the epilepsies: the developing diagnostic exome signature of epilepsy genes over a 5-year period. Epilepsia 57:29–29

    Google Scholar 

  25. Lemke JR, Geider K, Helbig KL, Heyne HO, Schutz H, Hentschel J, Courage C, Depienne C, Nava C, Heron D, Moller RS, Hjalgrim H, Lal D, Neubauer BA, Nurnberg P, Thiele H, Kurlemann G, Arnold GL, Bhambhani V, Bartholdi D, Pedurupillay CRJ, Misceo D, Frengen E, Stromme P, Dlugos DJ, Doherty ES, Bijlsma EK, Ruivenkamp CA, Hoffer MJV, Goldstein A, Rajan DS, Narayanan V, Ramsey K, Belnap N, Schrauwen I, Richholt R, Koeleman BPC, Sa J, Mendonca C, de Kovel CGF, Weckhuysen S, Hardies K, De Jonghe P, De Meirleir L, Milh M, Badens C, Lebrun M, Busa T, Francannet C, Piton A, Riesch E, Biskup S, Vogt H, Dorn T, Helbig I, Michaud JL, Laube B, Syrbe S (2016) Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy. Neurology 86(23):2171–2178. https://doi.org/10.1212/Wnl.0000000000002740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucariello M, Vidal E, Vidal S, Saez M, Roa L, Huertas D, Pineda M, Dalfo E, Dopazo J, Jurado P, Armstrong J, Esteller M (2016) Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype. Hum Genet 135(12):1343–1354. https://doi.org/10.1007/s00439-016-1721-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, Vertino-Bell A, Smaoui N, Neidich J, Monaghan KG, McKnight D, Bai RK, Suchy S, Friedman B, Tahiliani J, Pineda-Alvarez D, Richard G, Brandt T, Haverfield E, Chung WK, Bale S (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18(7):696–704. https://doi.org/10.1038/gim.2015.148

    Article  CAS  PubMed  Google Scholar 

  28. Platzer K, Yuan H, Schutz H, Winschel A, Chen W, Hu C, Kusumoto H, Heyne HO, Helbig KL, Tang S, Willing MC, Tinkle BT, Adams DJ, Depienne C, Keren B, Mignot C, Frengen E, Stromme P, Biskup S, Docker D, Strom TM, Mefford HC, Myers CT, Muir AM, LaCroix A, Sadleir L, Scheffer IE, Brilstra E, van Haelst MM, van der Smagt JJ, Bok LA, Moller RS, Jensen UB, Millichap JJ, Berg AT, Goldberg EM, De Bie I, Fox S, Major P, Jones JR, Zackai EH, Abou Jamra R, Rolfs A, Leventer RJ, Lawson JA, Roscioli T, Jansen FE, Ranza E, Korff CM, Lehesjoki AE, Courage C, Linnankivi T, Smith DR, Stanley C, Mintz M, McKnight D, Decker A, Tan WH, Tarnopolsky MA, Brady LI, Wolff M, Dondit L, Pedro HF, Parisotto SE, Jones KL, Patel AD, Franz DN, Vanzo R, Marco E, Ranells JD, Di Donato N, Dobyns WB, Laube B, Traynelis SF, Lemke JR (2017) GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet 54(7):460–470. https://doi.org/10.1136/jmedgenet-2016-104509

    Article  CAS  PubMed  Google Scholar 

  29. Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, Chong B, Phelan D, Brett GR, Creed E, Jarmolowicz A, Yap P, Walsh M, Downie L, Amor DJ, Savarirayan R, McGillivray G, Yeung A, Peters H, Robertson SJ, Robinson AJ, Macciocca I, Sadedin S, Bell K, Oshlack A, Georgeson P, Thorne N, Gaff C, White SM (2017) Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. Jama Pediatr 171(9):855–862. https://doi.org/10.1001/jamapediatrics.2017.1755

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fry AE, Fawcett KA, Zelnik N, Yuan HJ, Thompson BAN, Shemer-Meiri L, Cushion TD, Mugalaasi H, Sims D, Stoodley N, Chung SK, Rees MI, Patel CV, Brueton LA, Layet V, Giuliano F, Kerr MP, Banne E, Meiner V, Lerman-Sagie T, Helbig KL, Kofman LH, Knight KM, Chen WJ, Kannan V, Hu C, Kusumoto H, Zhang J, Swanger SA, Shaulsky GH, Mirzaa GM, Muir AM, Mefford HC, Dobyns WB, Mackenzie AB, Mullins JGL, Lemke JR, Bahi-Buisson N, Traynelis SF, Iago HF, Pilz DT (2018) De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 141:698–712. https://doi.org/10.1093/brain/awx358

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stanek D, Lassuthova P, Sterbova K, Vlckova M, Neupauerova J, Krutova M, Seeman P (2018) Detection rate of causal variants in severe childhood epilepsy is highest in patients with seizure onset within the first four weeks of life. Orphanet J Rare Dis 13:71. https://doi.org/10.1186/s13023-018-0812-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Frisk S, Wachtmeister A, Laurell T, Lindstrand A, Jantti N, Malmgren H, Lagerstedt-Robinson K, Tesi B, Taylan F, Nordgren A (2022) Detection of germline mosaicism in fathers of children with intellectual disability syndromes caused by de novo variants. Mol Genet Genom Med 10(4):e1880. https://doi.org/10.1002/mgg3.1880

    Article  CAS  Google Scholar 

  33. Jones KS, VanDongen HM, VanDongen AM (2002) The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J Neurosci 22(6):2044–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lam VM, Beerepoot P, Angers S, Salahpour A (2013) A novel assay for measurement of membrane-protein surface expression using a beta-lactamase reporter. Traffic 14(7):778–784. https://doi.org/10.1111/tra.12073

    Article  CAS  PubMed  Google Scholar 

  35. McDaniel MJ, Ogden KK, Kell SA, Burger PB, Liotta DC, Traynelis SF (2020) NMDA receptor channel gating control by the pre-M1 helix. J Gen Physiol 152(4):e201912362. https://doi.org/10.1085/jgp.201912362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amin JB, Gochman A, He M, Certain N, Wollmuth LP (2021) NMDA receptors require multiple pre-opening gating steps for efficient synaptic activity. Neuron 109:488-501.e4. https://doi.org/10.1016/j.neuron.2020.11.009

    Article  CAS  PubMed  Google Scholar 

  37. XiangWei W, Jiang Y, Yuan H (2018) De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physiol 2:27–35. https://doi.org/10.1016/j.cophys.2017.12.013

    Article  PubMed  Google Scholar 

  38. Strehlow V, Heyne HO, Vlaskamp DRM, Marwick KFM, Rudolf G, de Bellescize J, Biskup S, Brilstra EH, Brouwer OF, Callenbach PMC, Hentschel J, Hirsch E, Kind PC, Mignot C, Platzer K, Rump P, Skehel PA, Wyllie DJA, Hardingham GE, van Ravenswaaij-Arts CMA, Lesca G, Lemke JR, group GAs (2019) GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 142(1):80–92. https://doi.org/10.1093/brain/awy304

    Article  PubMed  Google Scholar 

  39. Matta JA, Pelkey KA, Craig MT, Chittajallu R, Jeffries BW, McBain CJ (2013) Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat Neurosci 16(8):1032-U1087. https://doi.org/10.1038/nn.3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kannangara TS, Bostrom CA, Ratzlaff A, Thompson L, Cater RM, Gil-Mohapel J, Christie BR (2014) Deletion of the NMDA receptor GluN2A subunit significantly decreases dendritic growth in maturing dentate granule neurons. PLoS ONE 9(8):e103155. https://doi.org/10.1371/journal.pone.0103155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perszyk RE, DiRaddo JO, Strong KL, Low CM, Ogden KK, Khatri A, Vargish GA, Pelkey KA, Tricoire L, Liotta DC, Smith Y, McBain CJ, Traynelis SF (2016) GluN2D-containing N-methyl-d-aspartate receptors mediate synaptic transmission in hippocampal interneurons and regulate interneuron activity. Mol Pharmacol 90(6):689–702. https://doi.org/10.1124/mol.116.105130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Booker SA, Sumera A, Kind PC, Wyllie DJA (2021) Contribution of NMDA receptors to synaptic function in rat hippocampal interneurons. Eneuro. https://doi.org/10.1523/Eneuro.0552-20.2021. (Artn 0552-20.2021)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Choi DW (1992) Excitotoxic cell-death. J Neurobiol 23(9):1261–1276. https://doi.org/10.1002/neu.480230915

    Article  CAS  PubMed  Google Scholar 

  44. Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann Ny Acad Sci 747:162–171

    Article  CAS  PubMed  Google Scholar 

  45. Hynd MR, Scott HL, Dodd PR (2004) NMDA receptor dysfunction in Alzheimer’s disease. J Neurochem 88:50–50

    Google Scholar 

  46. Zeron MM, Hansson O, Chen NS, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA (2002) Increased sensitivity to N-methyl-d-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33(6):849–860. https://doi.org/10.1016/S0896-6273(02)00615-3

    Article  CAS  PubMed  Google Scholar 

  47. Coyle JT (2006) Substance use disorders and schizophrenia: a question of shared glutamatergic mechanisms. Neurotox Res 10(3–4):221–233. https://doi.org/10.1007/Bf03033359

    Article  CAS  PubMed  Google Scholar 

  48. Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiat Res 33(6):523–533. https://doi.org/10.1016/S0022-3956(99)00029-1

    Article  CAS  PubMed  Google Scholar 

  49. Amador A, Bostick CD, Olson H, Peters J, Camp CR, Krizay D, Chen W, Han W, Tang W, Kanber A, Kim S, Teoh J, Sah M, Petri S, Paek H, Kim A, Lutz CM, Yang M, Myers SJ, Bhattacharya S, Yuan H, Goldstein DB, Poduri A, Boland MJ, Traynelis SF, Frankel WN (2020) Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain 143(7):2039–2057. https://doi.org/10.1093/brain/awaa147

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shin W, Kim K, Serraz B, Cho YS, Kim D, Kang M, Lee EJ, Lee H, Bae YC, Paoletti P, Kim E (2020) Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol 18(4):e3000717. https://doi.org/10.1371/journal.pbio.3000717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bertocchi I, Eltokhi A, Rozov A, Chi VN, Jensen V, Bus T, Pawlak V, Serafino M, Sonntag H, Yang B, Burnashev N, Li SB, Obenhaus HA, Both M, Niewoehner B, Single FN, Briese M, Boerner T, Gass P, Rawlins JNP, Kohr G, Bannerman DM, Sprengel R (2021) Voltage-independent GluN2A-type NMDA receptor Ca(2+) signaling promotes audiogenic seizures, attentional and cognitive deficits in mice. Commun Biol 4(1):59. https://doi.org/10.1038/s42003-020-01538-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han W, Yuan H, Allen JP, Kim S, Shaulsky GH, Perszyk RE, Traynelis SF, Myers SJ (2022) Opportunities for precision treatment of GRIN2A and GRIN2B gain-of-function variants in triheteromeric N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 381(1):54–66. https://doi.org/10.1124/jpet.121.001000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Phoung Le for excellent technical assistance.

Funding

This work was supported by the CureGRIN Foundation (SFT), Simon’s Foundation (SFT), the NIH (NINDS NS111619 to SFT; NICHD HD082373 to HY, AG072142 to SJM), the Fashion Industries Guild Endowed Fellowship for the Undiagnosed Diseases Program (TMP), the Cedars-Sinai Diana and Steve Marienhoff Fashion Industries Guild Endowed Fellowship in Pediatric Neuromuscular Diseases (TMP), and the Cedars-Sinai institutional funding program (TMP).

Author information

Authors and Affiliations

Authors

Contributions

SFT, SJM, and HY designed the experiments and analyzed the data; GC, KAS, BMC, PAS, KG, LAD, RR and TMP contributed to phenotyping and collecting clinical information; LX, MJM, REP, SK, JZ, KN, RS, and SJM performed biological experiments. All authors discussed the results and implications. All authors wrote the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Stephen F. Traynelis.

Ethics declarations

Conflict of interest

SFT is a member of the SAB for Eumentis Therapeutics, Sage Therapeutics, and Combined Brain, is a member of the Medical Advisory Board for the GRIN2B Foundation and the CureGRIN Foundation, is an advisor to GRIN Therapeutics and Neurocrine, is co-founder of NeurOp Inc. and AgriThera Inc., and is a member of the Board of Directors of NeurOp Inc. HY is PI on a research grant from Sage Therapeutics to Emory University School of Medicine. SJM is PI on a research grant from GRIN Therapeutics to Emory University School of Medicine. SFT, SJM, and HY are co-inventors on Emory University-owned Intellectual Property that includes allosteric modulators of NMDA receptor function. TMP has no disclosures.

Ethics approval

This study was approved by the Medical Ethics Committee and the Institutional Review Boards of Federico II University (Italy), University of California, San Francisco (USA), University Hospital Virgen del Rocío (Spain), and Cedars-Sinai Medical Center (USA). All functional studies were performed according to the guidelines of Emory University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 913 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., McDaniel, M.J., Perszyk, R.E. et al. Functional effects of disease-associated variants reveal that the S1–M1 linker of the NMDA receptor critically controls channel opening. Cell. Mol. Life Sci. 80, 110 (2023). https://doi.org/10.1007/s00018-023-04705-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04705-y

Keywords

Navigation