Skip to main content

Advertisement

Log in

Novel neuroactive steroids as positive allosteric modulators of NMDA receptors: mechanism, site of action, and rescue pharmacology on GRIN variants associated with neurological conditions

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson’s disease, Alzheimer’s disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

24(S)-HC:

24(S)-hydroxycholesterol

7-CKA:

7-Chlorokynurenic acid

ABD:

Agonist binding domain

AP-5:

D,L-2-Amino-5-phosphonovalerate

ASD:

Autism spectrum disorder

ATD:

Amino terminal domain

CTD:

Carboxyl terminal domain

EPSP:

Excitatory postsynaptic potential

LBD:

Ligand binding domain

LoF:

Loss-of-function

MNSs:

Medium spiny neurons

MTSEA:

2-Aminoethyl methanethiosulfonate hydrobromide

NAS:

Neuroactive steroids

NGS:

Next-generation sequencing

NMDAR:

N-Methyl-d-aspartate receptor

NTD:

N-terminal domain

PAM:

Positive allosteric modulator

TEVC:

Two-electrode voltage clamp

TMD:

Transmembrane domain (M1-4)

References

  1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. https://doi.org/10.1124/pr.109.002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73(4):298–487. https://doi.org/10.1124/pharmrev.120.000131

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347(1):150–160. https://doi.org/10.1002/cne.903470112

    Article  CAS  PubMed  Google Scholar 

  4. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF (2018) Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 150(8):1081–1105. https://doi.org/10.1085/jgp.201812032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, Geider K, Laube B, Schwake M, Finsterwalder K, Franke A, Schilhabel M, Jahn JA, Muhle H, Boor R, Van Paesschen W, Caraballo R, Fejerman N, Weckhuysen S, De Jonghe P, Larsen J, Moller RS, Hjalgrim H, Addis L, Tang S, Hughes E, Pal DK, Veri K, Vaher U, Talvik T, Dimova P, Guerrero Lopez R, Serratosa JM, Linnankivi T, Lehesjoki AE, Ruf S, Wolff M, Buerki S, Wohlrab G, Kroell J, Datta AN, Fiedler B, Kurlemann G, Kluger G, Hahn A, Haberlandt DE, Kutzer C, Sperner J, Becker F, Weber YG, Feucht M, Steinbock H, Neophythou B, Ronen GM, Gruber-Sedlmayr U, Geldner J, Harvey RJ, Hoffmann P, Herms S, Altmuller J, Toliat MR, Thiele H, Nurnberg P, Wilhelm C, Stephani U, Helbig I, Lerche H, Zimprich F, Neubauer BA, Biskup S, von Spiczak S (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45(9):1067–1072. https://doi.org/10.1038/ng.2728

    Article  CAS  PubMed  Google Scholar 

  6. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354. https://doi.org/10.1016/s0006-3223(99)00230-9

    Article  CAS  PubMed  Google Scholar 

  7. Hallett PJ, Standaert DG (2004) Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther 102(2):155–174. https://doi.org/10.1016/j.pharmthera.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  8. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348(14):1333–1341. https://doi.org/10.1056/NEJMoa013128

    Article  CAS  PubMed  Google Scholar 

  9. Wick EC, Grant MC, Wu CL (2017) Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: a review. JAMA Surg 152(7):691–697. https://doi.org/10.1001/jamasurg.2017.0898

    Article  PubMed  Google Scholar 

  10. Yurkewicz L, Weaver J, Bullock MR, Marshall LF (2005) The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma 22(12):1428–1443. https://doi.org/10.1089/neu.2005.22.1428

    Article  PubMed  Google Scholar 

  11. Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. https://doi.org/10.1016/j.coph.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF (2015) Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol 88(1):203–217. https://doi.org/10.1124/mol.115.097998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. XiangWei W, Jiang Y, Yuan H (2018) De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physiol 2:27–35. https://doi.org/10.1016/j.cophys.2017.12.013

    Article  PubMed  Google Scholar 

  14. Lesca G, Moller RS, Rudolf G, Hirsch E, Hjalgrim H, Szepetowski P (2019) Update on the genetics of the epilepsy-aphasia spectrum and role of GRIN2A mutations. Epileptic Disord 21(S1):41–47. https://doi.org/10.1684/epd.2019.1056

    Article  PubMed  Google Scholar 

  15. Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM (2019) Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F100Res. https://doi.org/10.12688/f1000research.18949.1

    Article  Google Scholar 

  16. Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, Traynelis SF, Lemke J (2021) Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 199:108805. https://doi.org/10.1016/j.neuropharm.2021.108805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benarroch EE (2007) Neurosteroids: endogenous modulators of neuronal excitability and plasticity. Neurology 68(12):945–947. https://doi.org/10.1212/01.wnl.0000257836.09570.e1

    Article  PubMed  Google Scholar 

  18. Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6(6):2311–2322

    Article  CAS  PubMed  Google Scholar 

  19. Vallee M, Mayo W, Koob GF, Le Moal M (2001) Neurosteroids in learning and memory processes. Int Rev Neurobiol 46:273–320. https://doi.org/10.1016/s0074-7742(01)46066-1

    Article  CAS  PubMed  Google Scholar 

  20. Popiolek M, Izumi Y, Hopper AT, Dai J, Miller S, Shu HJ, Zorumski CF, Mennerick S (2020) Effects of CYP46A1 inhibition on long-term-depression in hippocampal slices ex vivo and 24S-hydroxycholesterol levels in mice in vivo. Front Mol Neurosci 13:568641. https://doi.org/10.3389/fnmol.2020.568641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paul SM, Doherty JJ, Robichaud AJ, Belfort GM, Chow BY, Hammond RS, Crawford DC, Linsenbardt AJ, Shu HJ, Izumi Y, Mennerick SJ, Zorumski CF (2013) The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 33(44):17290–17300. https://doi.org/10.1523/JNEUROSCI.2619-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun MY, Izumi Y, Benz A, Zorumski CF, Mennerick S (2016) Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol 115(3):1263–1272. https://doi.org/10.1152/jn.00890.2015

    Article  PubMed  Google Scholar 

  23. La DS, Salituro FG, Martinez Botella G, Griffin AM, Bai Z, Ackley MA, Dai J, Doherty JJ, Harrison BL, Hoffmann EC, Kazdoba TM, Lewis MC, Quirk MC, Robichaud AJ (2019) Neuroactive steroid N-methyl-d-aspartate receptor positive allosteric modulators: synthesis, SAR, and pharmacological activity. J Med Chem 62(16):7526–7542. https://doi.org/10.1021/acs.jmedchem.9b00591

    Article  CAS  PubMed  Google Scholar 

  24. Wei X, Nishi T, Kondou S, Kimura H, Mody I (2019) Preferential enhancement of GluN2B-containing native NMDA receptors by the endogenous modulator 24S-hydroxycholesterol in hippocampal neurons. Neuropharmacology 148:11–20. https://doi.org/10.1016/j.neuropharm.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  25. Tang W, Liu D, Traynelis SF, Yuan H (2020) Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders. Neuropharmacology 177:108247. https://doi.org/10.1016/j.neuropharm.2020.108247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kysilov B, Hrcka Krausova B, Vyklicky V, Smejkalova T, Korinek M, Horak M, Chodounska H, Kudova E, Cerny J, Vyklicky L (2022) Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations. Br J Pharmacol 179(15):3970–3990. https://doi.org/10.1111/bph.15841

    Article  CAS  PubMed  Google Scholar 

  27. Wilding TJ, Lopez MN, Huettner JE (2016) Chimeric glutamate receptor subunits reveal the transmembrane domain is sufficient for NMDA receptor pore properties but some positive allosteric modulators require additional domains. J Neurosci 36(34):8815–8825. https://doi.org/10.1523/JNEUROSCI.0345-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hedegaard M, Hansen KB, Andersen KT, Brauner-Osborne H, Traynelis SF (2012) Molecular pharmacology of human NMDA receptors. Neurochem Int 61(4):601–609. https://doi.org/10.1016/j.neuint.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H (2017) Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol Pharmacol 91(4):317–330. https://doi.org/10.1124/mol.116.106781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strong KL, Epplin MP, Ogden KK, Burger PB, Kaiser TM, Wilding TJ, Kusumoto H, Camp CR, Shaulsky G, Bhattacharya S, Perszyk RE, Menaldino DS, McDaniel MJ, Zhang J, Le P, Banke TG, Hansen KB, Huettner JE, Liotta DC, Traynelis SF (2021) Distinct GluN1 and GluN2 structural determinants for subunit-selective positive allosteric modulation of N-methyl-d-aspartate receptors. ACS Chem Neurosci 12(1):79–98. https://doi.org/10.1021/acschemneuro.0c00561

    Article  CAS  PubMed  Google Scholar 

  31. Jones KS, VanDongen HM, VanDongen AM (2002) The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J Neurosci 22(6):2044–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuan H, Erreger K, Dravid SM, Traynelis SF (2005) Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3. J Biol Chem 280(33):29708–29716. https://doi.org/10.1074/jbc.M414215200

    Article  CAS  PubMed  Google Scholar 

  33. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7(8):2745–2752. https://doi.org/10.1128/mcb.7.8.2745-2752.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hansen KB, Tajima N, Risgaard R, Perszyk RE, Jorgensen L, Vance KM, Ogden KK, Clausen RP, Furukawa H, Traynelis SF (2013) Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors. Mol Pharmacol 84(1):114–127. https://doi.org/10.1124/mol.113.085803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Traynelis SF, Jaramillo F (1998) Getting the most out of noise in the central nervous system. Trends Neurosci 21(4):137–145. https://doi.org/10.1016/s0166-2236(98)01238-7

    Article  CAS  PubMed  Google Scholar 

  36. Perszyk RE, Zheng Z, Banke TG, Zhang J, Xie L, McDaniel MJ, Katzman BM, Pelly SC, Yuan H, Liotta DC, Traynelis SF (2021) The negative allosteric modulator EU1794-4 reduces single-channel conductance and Ca(2+) permeability of GluN1/GluN2A N-Methyl-d-aspartate receptors. Mol Pharmacol 99(5):399–411. https://doi.org/10.1124/molpharm.120.000218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  38. Perszyk RE, Swanger SA, Shelley C, Khatri A, Fernandez-Cuervo G, Epplin MP, Zhang J, Le P, Bulow P, Garnier-Amblard E, Gangireddy PKR, Bassell GJ, Yuan H, Menaldino DS, Liotta DC, Liebeskind LS, Traynelis SF (2020) Biased modulators of NMDA receptors control channel opening and ion selectivity. Nat Chem Biol 16(2):188–196. https://doi.org/10.1038/s41589-019-0449-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogden KK, Traynelis SF (2013) Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol Pharmacol 83(5):1045–1056. https://doi.org/10.1124/mol.113.085209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang TM, Brown BM, Deng L, Sellers BD, Lupardus PJ, Wallweber HJA, Gustafson A, Wong E, Volgraf M, Schwarz JB, Hackos DH, Hanson JE (2017) A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain. Neuropharmacology 121:204–218. https://doi.org/10.1016/j.neuropharm.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  41. Perszyk R, Katzman BM, Kusumoto H, Kell SA, Epplin MP, Tahirovic YA, Moore RL, Menaldino D, Burger P, Liotta DC, Traynelis SF (2018) An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups. Elife. https://doi.org/10.7554/eLife.34711

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hrcka Krausova B, Kysilov B, Cerny J, Vyklicky V, Smejkalova T, Ladislav M, Balik A, Korinek M, Chodounska H, Kudova E, Vyklicky L (2020) Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. J Neurosci 40(31):5922–5936. https://doi.org/10.1523/JNEUROSCI.3010-19.2020

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ceccon M, Rumbaugh G, Vicini S (2001) Distinct effect of pregnenolone sulfate on NMDA receptor subtypes. Neuropharmacology 40(4):491–500. https://doi.org/10.1016/s0028-3908(00)00197-0

    Article  CAS  PubMed  Google Scholar 

  44. Dubrovsky B (2006) Neurosteroids, neuroactive steroids, and symptoms of affective disorders. Pharmacol Biochem Behav 84(4):644–655. https://doi.org/10.1016/j.pbb.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  45. Horak M, Vlcek K, Petrovic M, Chodounska H, Vyklicky L Jr (2004) Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J Neurosci 24(46):10318–10325. https://doi.org/10.1523/JNEUROSCI.2099-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Malayev A, Gibbs TT, Farb DH (2002) Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol 135(4):901–909. https://doi.org/10.1038/sj.bjp.0704543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF (2020) Hodgkin–Huxley–Katz prize lecture: genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J Physiol. https://doi.org/10.1113/JP278086

    Article  PubMed  Google Scholar 

  48. Talukder I, Borker P, Wollmuth LP (2010) Specific sites within the ligand-binding domain and ion channel linkers modulate nmda receptor gating. J Neurosci 30(35):11792–11804. https://doi.org/10.1523/Jneurosci.5382-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kostakis E, Jang MK, Russek SJ, Gibbs TT, Farb DH (2011) A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons. J Neurochem 119(3):486–496. https://doi.org/10.1111/j.1471-4159.2011.07442.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462(7274):745–756. https://doi.org/10.1038/nature08624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bjorkhem I, Starck L, Andersson U, Lutjohann D, von Bahr S, Pikuleva I, Babiker A, Diczfalusy U (2001) Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. J Lipid Res 42(3):366–371

    Article  CAS  PubMed  Google Scholar 

  52. Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE, Olzeski D, Sidhu R, Dietzen DJ, Fu R, Wassif CA, Yanjanin NM, Marso SP, House J, Vite C, Schaffer JE, Ory DS (2010) Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med 2(56):56–81. https://doi.org/10.1126/scitranslmed.3001417

    Article  CAS  Google Scholar 

  53. Leoni V, Long JD, Mills JA, Di Donato S, Paulsen JS (2013) Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol Dis 55:37–43. https://doi.org/10.1016/j.nbd.2013.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lewis M, Dai J, Mohan A, Tabrizi S, Doherty J, Robichaud A, Quirk M (2020) 24(S)-hydroxycholesterol levels are decreased in early Huntington’s disease and are associated with deficits in several cognitive domains. Neurology 94(15):4070

    Google Scholar 

  55. Hill MD, Blanco MJ, Salituro FG, Bai Z, Beckley JT, Ackley MA, Dai J, Doherty JJ, Harrison BL, Hoffmann EC, Kazdoba TM, Lanzetta D, Lewis M, Quirk MC, Robichaud AJ (2022) SAGE-718: a first-in-class N-Methyl-d-aspartate receptor positive allosteric modulator for the potential treatment of cognitive impairment. J Med Chem 65(13):9063–9075. https://doi.org/10.1021/acs.jmedchem.2c00313

    Article  CAS  PubMed  Google Scholar 

  56. Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, Parsons TD, Lynch DR, Dalmau J, Balice-Gordon RJ (2010) Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 30(17):5866–5875. https://doi.org/10.1523/JNEUROSCI.0167-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R (2011) Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 10(1):63–74. https://doi.org/10.1016/S1474-4422(10)70253-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Warikoo N, Brunwasser SJ, Benz A, Shu HJ, Paul SM, Lewis M, Doherty J, Quirk M, Piccio L, Zorumski CF, Day GS, Mennerick S (2018) Positive allosteric modulation as a potential therapeutic strategy in anti-NMDA receptor encephalitis. J Neurosci 38(13):3218–3229. https://doi.org/10.1523/JNEUROSCI.3377-17.2018

    Article  PubMed  PubMed Central  Google Scholar 

  59. Radosevic M, Planaguma J, Mannara F, Mellado A, Aguilar E, Sabater L, Landa J, Garcia-Serra A, Maudes E, Gasull X, Lewis M, Dalmau J (2022) Allosteric modulation of NMDARs reverses patients’ autoantibody effects in mice. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000001122

    Article  PubMed  Google Scholar 

  60. Swanger SA, Chen W, Wells G, Burger PB, Tankovic A, Bhattacharya S, Strong KL, Hu C, Kusumoto H, Zhang J, Adams DR, Millichap JJ, Petrovski S, Traynelis SF, Yuan H (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 99(6):1261–1280. https://doi.org/10.1016/j.ajhg.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Addis L, Virdee JK, Vidler LR, Collier DA, Pal DK, Ursu D (2017) Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency—molecular profiling and functional rescue. Sci Rep 7(1):66. https://doi.org/10.1038/s41598-017-00115-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vyklicky V, Krausova B, Cerny J, Ladislav M, Smejkalova T, Kysilov B, Korinek M, Danacikova S, Horak M, Chodounska H, Kudova E, Vyklicky L (2018) Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2b subunit. Front Mol Neurosci 11:110. https://doi.org/10.3389/fnmol.2018.00110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holubova K, Chvojkova M, Hrcka Krausova B, Vyklicky V, Kudova E, Chodounska H, Vyklicky L, Vales K (2021) Pitfalls of NMDA receptor modulation by neuroactive steroids. The effect of positive and negative modulation of NMDA receptors in an animal model of schizophrenia. Biomolecules. https://doi.org/10.3390/biom11071026

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF (2016) Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 132(2):115–121. https://doi.org/10.1016/j.jphs.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Myers RA, Casals F, Gauthier J, Hamdan FF, Keebler J, Boyko AR, Bustamante CD, Piton AM, Spiegelman D, Henrion E, Zilversmit M, Hussin J, Quinlan J, Yang Y, Lafreniere RG, Griffing AR, Stone EA, Rouleau GA, Awadalla P (2011) A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet 7(2):e1001318. https://doi.org/10.1371/journal.pgen.1001318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O’Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338(6114):1619–1622. https://doi.org/10.1126/science.1227764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250. https://doi.org/10.1038/nature10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Iossifov I, Levy D, Allen J, Ye K, Ronemus M, Lee YH, Yamrom B, Wigler M (2015) Low load for disruptive mutations in autism genes and their biased transmission. Proc Natl Acad Sci U S A 112(41):E5600-5607. https://doi.org/10.1073/pnas.1516376112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Platzer K, Yuan H, Schutz H, Winschel A, Chen W, Hu C, Kusumoto H, Heyne HO, Helbig KL, Tang S, Willing MC, Tinkle BT, Adams DJ, Depienne C, Keren B, Mignot C, Frengen E, Stromme P, Biskup S, Docker D, Strom TM, Mefford HC, Myers CT, Muir AM, LaCroix A, Sadleir L, Scheffer IE, Brilstra E, van Haelst MM, van der Smagt JJ, Bok LA, Moller RS, Jensen UB, Millichap JJ, Berg AT, Goldberg EM, De Bie I, Fox S, Major P, Jones JR, Zackai EH, Abou Jamra R, Rolfs A, Leventer RJ, Lawson JA, Roscioli T, Jansen FE, Ranza E, Korff CM, Lehesjoki AE, Courage C, Linnankivi T, Smith DR, Stanley C, Mintz M, McKnight D, Decker A, Tan WH, Tarnopolsky MA, Brady LI, Wolff M, Dondit L, Pedro HF, Parisotto SE, Jones KL, Patel AD, Franz DN, Vanzo R, Marco E, Ranells JD, Di Donato N, Dobyns WB, Laube B, Traynelis SF, Lemke JR (2017) GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet 54(7):460–470. https://doi.org/10.1136/jmedgenet-2016-104509

    Article  CAS  PubMed  Google Scholar 

  70. Yoo HJ, Cho IH, Park M, Yang SY, Kim SA (2012) Family based association of GRIN2A and GRIN2B with Korean autism spectrum disorders. Neurosci Lett 512(2):89–93. https://doi.org/10.1016/j.neulet.2012.01.061

    Article  CAS  PubMed  Google Scholar 

  71. Shin W, Kim K, Serraz B, Cho YS, Kim D, Kang M, Lee EJ, Lee H, Bae YC, Paoletti P, Kim E (2020) Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol 18(4):e3000717. https://doi.org/10.1371/journal.pbio.3000717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997. https://doi.org/10.1126/science.1251915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NINDS NS111619 (S.F.T.), by NICHD HD082373 (H.Y.), and by a grant from Sage Therapeutics to Emory University (H.Y.). We thank Jennifer Bain for helpful comments, Dr. TJ Murphy for his excellent advice on statistical analyses, and Jing Zhang for her excellent technical assistance.

Funding

This work was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD082373), National Institute of Neurological Disorders and Stroke (NS111619), Sage Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., S.F.T., J.T.B., S.J.M., M.A.A., and J.J.D. designed the experiments and analyzed the data. W.T., R.S., Y.X., S.K., S.J.M., E.S.D., J.Z., and H.Y. performed biological experiments. All authors discussed the results and implications. All authors wrote the manuscript and read and approved the final manuscript.

Corresponding authors

Correspondence to Stephen F. Traynelis or Hongjie Yuan.

Ethics declarations

Conflict of interest

S.F.T. is a member of the SAB for Eumentis Therapeutics and Sage Therapeutics, is a member of the Medical Advisory Board for the GRIN2B Foundation and the CureGRIN Foundation, is an advisor to GRIN Therapeutics and Combined Brain, is co-founder of NeurOp Inc. and AgriThera Inc., and is a member of the Board of Directors of NeurOp Inc. H.Y. is PI on a research grant from Sage Therapeutics to Emory University School of Medicine. S.J.M. is PI on a research grant from GRIN Therapeutics to Emory University School of Medicine. S.F.T., S.J.M., and H.Y. are co-inventors on Emory University-owned Intellectual Property that includes allosteric modulators of NMDA receptor function. M.A.A., J.T.B., J.J.D., M.C.Q., and A.J.R. are employees of Sage Therapeutics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 193 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Beckley, J.T., Zhang, J. et al. Novel neuroactive steroids as positive allosteric modulators of NMDA receptors: mechanism, site of action, and rescue pharmacology on GRIN variants associated with neurological conditions. Cell. Mol. Life Sci. 80, 42 (2023). https://doi.org/10.1007/s00018-022-04667-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04667-7

Keywords

Navigation