Skip to main content

Advertisement

Log in

WWOX inhibition by Zfra1-31 restores mitochondrial homeostasis and viability of neuronal cells exposed to high glucose

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Diabetes has been associated with an increased risk of cognitive decline and dementia. However, the mechanisms underlying this association remain unclear and no effective therapeutic interventions exist. Accumulating evidence demonstrates that mitochondrial defects are a key feature of diabetes contributing to neurodegenerative events. It has also been demonstrated that the putative tumor suppressor WW domain-containing oxidoreductase 1 (WWOX) can interact with mitochondria in several pathological conditions. However, its role in diabetes-associated neurodegeneration remains unknown. So, this study aimed to evaluate the role of WWOX activation in high glucose-induced neuronal damage and death. Our experiments were mainly performed in differentiated SH-SY5Y neuroblastoma cells exposed to high glucose and treated (or not) with Zfra1-31, the specific inhibitor of WWOX. Several parameters were analyzed namely cell viability, WWOX activation (tyrosine 33 residue phosphorylation), mitochondrial function, reactive oxygen species (ROS) production, biogenesis, and dynamics, autophagy and oxidative stress/damage. The levels of the neurotoxic proteins amyloid β (Aβ) and phosphorylated Tau (pTau) and of synaptic integrity markers were also evaluated. We observed that high glucose increased the levels of activated WWOX. Interestingly, brain cortical and hippocampal homogenates from young (6-month old) diabetic GK rats showed increased levels of activated WWOX compared to older GK rats (12-month old) suggesting that WWOX plays an early role in the diabetic brain. In neuronal cells, high glucose impaired mitochondrial respiration, dynamics and biogenesis, increased mitochondrial ROS production and decreased mitochondrial membrane potential and ATP production. More, high glucose augmented oxidative stress/damage and the levels of Aβ and pTau proteins and affected autophagy, contributing to the loss of synaptic integrity and cell death. Of note, the activation of WWOX preceded mitochondrial dysfunction and cell death. Importantly, the inhibition of WWOX with Zfra1-31 reversed, totally or partially, the alterations promoted by high glucose. Altogether our observations demonstrate that under high glucose conditions WWOX activation contributes to mitochondrial anomalies and neuronal damage and death, which suggests that WWOX is a potential therapeutic target for early interventions. Our findings also support the efficacy of Zfra1-31 in treating hyperglycemia/diabetes-associated neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Brussels, Belgium. 2021. https://www.diabetesatlas.org. Accessed 10 Feb 2022

  2. International Diabetes Federation I (2019) IDF Diabetes Atlas, 9th edn. Brussels. https://www.diabetesatlas.org. Accessed 2020

  3. Correia S, Carvalho C, Santos R, Cardoso S, Santos M, Moreira P (2010) Diabetes as a trigger of neurodegeneration: from pathophysiological mechanisms to therapeutic approaches. In: Stefek M (ed) Advances in molecular mechanisms and pharmacology of diabetic complications, pp 175–198

  4. Carvalho C, Cardoso S, Correia SC, Santos RX, Santos MS, Baldeiras I et al (2012) Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities. Diabetes 61(5):1234–1242. https://doi.org/10.2337/db11-1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Candeias E, Duarte AI, Sebastiao I, Fernandes MA, Placido AI, Carvalho C et al (2017) Middle-aged diabetic females and males present distinct susceptibility to Alzheimer disease-like pathology. Mol Neurobiol 54(8):6471–6489. https://doi.org/10.1007/s12035-016-0155-1

    Article  CAS  PubMed  Google Scholar 

  6. Carvalho CPIM (2020) Cognitive impairment in obesity and diabetes. In: Faintuch JSF (ed) Obesity and diabetes. Springer, Berlin

  7. Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z et al (2020) Metabolism: a novel shared link between diabetes mellitus and Alzheimer’s disease. J Diabetes Res 2020:4981814. https://doi.org/10.1155/2020/4981814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cardoso S, Santos MS, Seica R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802(11):942–951. https://doi.org/10.1016/j.bbadis.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Cardoso S, Santos RX, Correia SC, Carvalho C, Santos MS, Baldeiras I et al (2012) Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis 49C:1–12. https://doi.org/10.1016/j.nbd.2012.08.008

    Article  CAS  Google Scholar 

  10. Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, Carvalho C et al (2014) Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes. Mol Cell Biochem 394(1–2):13–22. https://doi.org/10.1007/s11010-014-2076-5

    Article  CAS  PubMed  Google Scholar 

  11. Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, Carvalho C et al (2014) Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochim Biophys Acta 1842(7):1154–1166. https://doi.org/10.1016/j.bbadis.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  12. Rocha M, Apostolova N, Diaz-Rua R, Muntane J, Victor VM (2020) Mitochondria and T2D: role of autophagy, ER stress, and inflammasome. Trends Endocrinol Metab 31(10):725–741. https://doi.org/10.1016/j.tem.2020.03.004

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho C, Machado N, Mota P, Correia S, Cardoso S, Santos R et al (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive and vascular anomalies. J Alzheimer Dis 35(3)

  14. Cardoso S, Seica RM, Moreira PI (2018) Uncoupling protein 2 inhibition exacerbates glucose fluctuation-mediated neuronal effects. Neurotox Res 33(2):388–401. https://doi.org/10.1007/s12640-017-9805-y

    Article  CAS  PubMed  Google Scholar 

  15. Teng CC, Yang YT, Chen YC, Kuo YM, Sze CI (2012) Role of WWOX/WOX1 in Alzheimer’s disease pathology and in cell death signaling. Front Biosci (Elite Ed) 4:1951–1965

    Google Scholar 

  16. Chang NS, Doherty J, Ensign A, Lewis J, Heath J, Schultz L et al (2003) Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol 66(8):1347–1354 (S0006295203004842 [pii])

    Article  CAS  Google Scholar 

  17. Sze CI, Su M, Pugazhenthi S, Jambal P, Hsu LJ, Heath J et al (2004) Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer’s disease. J Biol Chem 279(29):30498–30506. https://doi.org/10.1074/jbc.M401399200

    Article  CAS  PubMed  Google Scholar 

  18. Lo CP, Hsu LJ, Li MY, Hsu SY, Chuang JI, Tsai MS et al (2008) MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1. Eur J Neurosci 27(7):1634–1646. https://doi.org/10.1111/j.1460-9568.2008.06139.x

    Article  PubMed  Google Scholar 

  19. Tabarki B, AlHashem A, AlShahwan S, Alkuraya FS, Gedela S, Zuccoli G (2015) Severe CNS involvement in WWOX mutations: description of five new cases. Am J Med Genet A 167A(12):3209–3213. https://doi.org/10.1002/ajmg.a.37363

    Article  CAS  PubMed  Google Scholar 

  20. Lee MH, Shih YH, Lin SR, Chang JY, Lin YH, Sze CI et al (2017) Zfra restores memory deficits in Alzheimer’s disease triple-transgenic mice by blocking aggregation of TRAPPC6ADelta, SH3GLB2, tau, and amyloid beta, and inflammatory NF-kappaB activation. Alzheimers Dement 3(2):189–204. https://doi.org/10.1016/j.trci.2017.02.001

    Article  Google Scholar 

  21. Huang SS, Chang NS (2018) Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 243(2):137–147. https://doi.org/10.1177/1535370217752350

    Article  CAS  Google Scholar 

  22. Chang HT, Liu CC, Chen ST, Yap YV, Chang NS, Sze CI (2014) WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget 5(23):11792–11799. https://doi.org/10.18632/oncotarget.2961

    Article  PubMed  PubMed Central  Google Scholar 

  23. Suzuki H, Katayama K, Takenaka M, Amakasu K, Saito K, Suzuki K (2009) A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. Genes Brain Behav 8(7):650–660. https://doi.org/10.1111/j.1601-183X.2009.00502.x

    Article  CAS  PubMed  Google Scholar 

  24. Mallaret M, Synofzik M, Lee J, Sagum CA, Mahajnah M, Sharkia R et al (2014) The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain 137(Pt 2):411–419. https://doi.org/10.1093/brain/awt338

    Article  PubMed  Google Scholar 

  25. Elsaadany L, El-Said M, Ali R, Kamel H, Ben-Omran T (2016) W44X mutation in the WWOX gene causes intractable seizures and developmental delay: a case report. BMC Med Genet 17(1):53. https://doi.org/10.1186/s12881-016-0317-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silva DF, Esteves AR, Oliveira CR, Cardoso SM (2017) Mitochondrial metabolism power SIRT2-dependent deficient traffic causing Alzheimer’s-disease related pathology. Mol Neurobiol 54(6):4021–4040. https://doi.org/10.1007/s12035-016-9951-x

    Article  CAS  PubMed  Google Scholar 

  27. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ et al (2004) Cell viability assays. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D et al (eds) Assay guidance manual. Bethesda (MD)

  28. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477. https://doi.org/10.1016/S0006-3495(99)77214-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dickinson BC, Lin VS, Chang CJ (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8(6):1249–1259. https://doi.org/10.1038/nprot.2013.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colombo G, Clerici M, Garavaglia ME, Giustarini D, Rossi R, Milzani A et al (2016) A step-by-step protocol for assaying protein carbonylation in biological samples. J Chromatogr B Anal Technol Biomed Life Sci 1019:178–190. https://doi.org/10.1016/j.jchromb.2015.11.052

    Article  CAS  Google Scholar 

  31. Green LC, Ruiz de Luzuriaga K, Wagner DA, Rand W, Istfan N, Young VR et al (1981) Nitrate biosynthesis in man. Proc Natl Acad Sci USA 78(12):7764–7768. https://doi.org/10.1073/pnas.78.12.7764

  32. Ernster L, Nordenbrand K (1967) Microsomal lipid peroxidation. Methods Enzymol 10:574–580

    Article  CAS  Google Scholar 

  33. Silva DF, Selfridge JE, Lu J, Roy N, Hutfles L et al (2013) Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines. Hum Mol Genet 22(19):3931–3946. https://doi.org/10.1093/hmg/ddt247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esteves AR, Arduino DM, Silva DF, Viana SD, Pereira FC, Cardoso SM (2018) Mitochondrial metabolism regulates microtubule acetylome and autophagy trough sirtuin-2: impact for Parkinson’s disease. Mol Neurobiol 55(2):1440–1462. https://doi.org/10.1007/s12035-017-0420-y

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho C, Santos MS, Oliveira CR, Moreira PI (2015) Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta 1852(8):1665–1675. https://doi.org/10.1016/j.bbadis.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira FM, Palmeira CM, Seica R, Moreno AJ, Santos MS (2003) Diabetes and mitochondrial bioenergetics: alterations with age. J Biochem Mol Toxicol 17(4):214–222. https://doi.org/10.1002/jbt.10081

    Article  CAS  PubMed  Google Scholar 

  37. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chimica Acta 329(1–2):23–38. https://doi.org/10.1016/s0009-8981(03)00003-2

    Article  CAS  Google Scholar 

  38. Babbar M, Sheikh MS (2013) Metabolic stress and disorders related to alterations in mitochondrial fission or fusion. Mol Cell Pharmacol 5(3):109–133

    PubMed  PubMed Central  Google Scholar 

  39. Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, Backus C et al (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53(1):160–169. https://doi.org/10.1007/s00125-009-1553-y

    Article  CAS  PubMed  Google Scholar 

  40. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB et al (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 287(5):E896-905. https://doi.org/10.1152/ajpendo.00047.2004

    Article  CAS  PubMed  Google Scholar 

  41. Cardoso SM, Correia SC, Carvalho C, Moreira PI (2017) Mitochondria in Alzheimer’s disease and diabetes-associated neurodegeneration: license to heal! Handb Exp Pharmacol 240:281–308. https://doi.org/10.1007/164_2017_3

    Article  CAS  PubMed  Google Scholar 

  42. Huang YC, Hsu SM, Shie FS, Shiao YJ, Chao LJ, Chen HW et al (2022) Reduced mitochondria membrane potential and lysosomal acidification are associated with decreased oligomeric Abeta degradation induced by hyperglycemia: a study of mixed glia cultures. PLoS ONE 17(1):e0260966. https://doi.org/10.1371/journal.pone.0260966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moreira PI (2018) Sweet mitochondria: a shortcut to Alzheimer’s disease. J Alzheimer’s Dis 62(3):1391–1401. https://doi.org/10.3233/JAD-170931

    Article  Google Scholar 

  44. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB et al (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19(9):609–633. https://doi.org/10.1038/s41573-020-0072-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kosla K, Kaluzinska Z, Bednarek AK (2020) The WWOX gene in brain development and pathology. Exp Biol Med (Maywood) 245(13):1122–1129. https://doi.org/10.1177/1535370220924618

    Article  CAS  Google Scholar 

  46. Moreira PI, Santos MS, Moreno AM, Seica R, Oliveira CR (2003) Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes 52(6):1449–1456

    Article  CAS  Google Scholar 

  47. Chang NS, Hsu LJ, Lin YS, Lai FJ, Sheu HM (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 13(1):12–22. https://doi.org/10.1016/j.molmed.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  48. Hsu CY, Lee KT, Sun TY, Sze CI, Huang SS, Hsu LJ et al (2021) WWOX and its binding proteins in neurodegeneration. Cells. https://doi.org/10.3390/cells10071781

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abdel-Salam G, Thoenes M, Afifi HH, Körber F, Swan D, Bolz HJ (2014) The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet J Rare Dis 9(1):12. https://doi.org/10.1186/1750-1172-9-12

    Article  PubMed  PubMed Central  Google Scholar 

  50. Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB (2007) Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol 225(2):214–220. https://doi.org/10.1016/j.taap.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  51. Salminen A, Kaarniranta K (2009) SIRT1: regulation of longevity via autophagy. Cell Signal 21(9):1356–1360. https://doi.org/10.1016/j.cellsig.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  52. Miao Y, Guo D, Li W, Zhong Y (2019) Diabetes promotes development of Alzheimer’s disease through suppression of autophagy. J Alzheimer’s Dis 69(1):289–296. https://doi.org/10.3233/JAD-190156

    Article  CAS  Google Scholar 

  53. Ni HM, Williams JA, Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13. https://doi.org/10.1016/j.redox.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  54. Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI et al (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alzheimer’s Dis 20(Suppl 2):S401–S412. https://doi.org/10.3233/JAD-2010-100666

    Article  CAS  Google Scholar 

  55. Luo L, Qin ZH (2019) Autophagy, aging, and longevity. Adv Exp Med Biol 1206:509–525. https://doi.org/10.1007/978-981-15-0602-4_24

    Article  CAS  PubMed  Google Scholar 

  56. Hussain S, Mansouri S, Sjoholm A, Patrone C, Darsalia V (2014) Evidence for cortical neuronal loss in male type 2 diabetic Goto-Kakizaki rats. J Alzheimer’s Dis 41(2):551–560. https://doi.org/10.3233/JAD-131958

    Article  Google Scholar 

  57. Pintana H, Apaijai N, Kerdphoo S, Pratchayasakul W, Sripetchwandee J, Suntornsaratoon P et al (2017) Hyperglycemia induced the Alzheimer’s proteins and promoted loss of synaptic proteins in advanced-age female Goto-Kakizaki (GK) rats. Neurosci Lett 655:41–45. https://doi.org/10.1016/j.neulet.2017.06.041

    Article  CAS  PubMed  Google Scholar 

  58. Movassat J, Delangre E, Liu J, Gu Y, Janel N (2019) Hypothesis and theory: circulating Alzheimer’s-related biomarkers in type 2 diabetes insight from the Goto-Kakizaki Rat. Front Neurol 10:649. https://doi.org/10.3389/fneur.2019.00649

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ke B, Zhang T, An T, Lu R (2020) Soy isoflavones ameliorate the cognitive dysfunction of Goto-Kakizaki rats by activating the Nrf2-HO-1 signalling pathway. Aging (Albany NY) 12(21):21344–21354. https://doi.org/10.18632/aging.103877

    Article  CAS  Google Scholar 

  60. Dai W, Jiang L (2019) Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front Endocrinol (Lausanne) 10:570. https://doi.org/10.3389/fendo.2019.00570

    Article  Google Scholar 

  61. Sprenger HG, Langer T (2019) The good and the bad of mitochondrial breakups. Trends Cell Biol 29(11):888–900. https://doi.org/10.1016/j.tcb.2019.08.003

    Article  CAS  PubMed  Google Scholar 

  62. Scott I, Youle RJ (2010) Mitochondrial fission and fusion. Essays Biochem 47:85–98. https://doi.org/10.1042/bse0470085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sanchis-Gomar F, Garcia-Gimenez JL, Gomez-Cabrera MC, Pallardo FV (2014) Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr Pharm Des 20(35):5619–5633. https://doi.org/10.2174/1381612820666140306095106

    Article  CAS  PubMed  Google Scholar 

  64. Tang JX, Thompson K, Taylor RW, Olahova M (2020) Mitochondrial OXPHOS biogenesis: co-regulation of protein synthesis, import, and assembly pathways. Int J Mol Sci. https://doi.org/10.3390/ijms21113820

    Article  PubMed  PubMed Central  Google Scholar 

  65. Greber S, Lubec G, Cairns N, Fountoulakis M (1999) Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer’s disease. Electrophoresis 20(4–5):928–934. https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5%3c928::AID-ELPS928%3e3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  66. Elias GM, Funke L, Stein V, Grant SG, Bredt DS, Nicoll RA (2006) Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52(2):307–320. https://doi.org/10.1016/j.neuron.2006.09.012

    Article  CAS  PubMed  Google Scholar 

  67. Kwon SE, Chapman ER (2011) Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70(5):847–854. https://doi.org/10.1016/j.neuron.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors’ work is supported by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme, the COMPETE 2020—Operational Programme for Competitiveness and Healthy Aging 2020 (CENTRO-01-0145-FEDER-000012) and national funds from FCT—Foundation for Science and Technology under the project PEst-C/SAU/LA0001/2013-2014; EXPL/MED-FSL/0033/2021 and strategic projects UIDB/04539/2020; UIDP/04539/2020 and LA/P/0058/2020". Cristina Carvalho has a work contract under the Individual Call to Scientific Employment Stimulus—1st Edition (CEECIND/02201/2017).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and results interpretation. Material preparation, data collection and analysis were performed by CC. Cells acquisition and preparation were made by SC. RS was responsible for GK and Wistar control rats colonies maintenance and breeding. The first draft of the manuscript was written by CC. PM helped in the experimental design, results discussion and revised the manuscript.

Corresponding authors

Correspondence to Cristina Carvalho or Paula I. Moreira.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 245 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, C., Correia, S.C., Seiça, R. et al. WWOX inhibition by Zfra1-31 restores mitochondrial homeostasis and viability of neuronal cells exposed to high glucose. Cell. Mol. Life Sci. 79, 487 (2022). https://doi.org/10.1007/s00018-022-04508-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04508-7

Keywords

Navigation