Skip to main content

Advertisement

Log in

Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases’ etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Pittenger MF (1999) Multilineage potential of adult human mesenchymal stem cells. Science (80-) 284:143–147. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  Google Scholar 

  2. Krampera M, Franchini M, Pizzolo G, Aprili G (2007) Mesenchymal stem cells: from biology to clinical use. Blood Transfus 5:120–129. https://doi.org/10.2450/2007.0029-07

    Article  PubMed  PubMed Central  Google Scholar 

  3. He A, Jiang Y, Gui C et al (2009) The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can J Cardiol 25:353–358. https://doi.org/10.1016/s0828-282x(09)70094-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Block GJ, Ohkouchi S, Fung F et al (2009) Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 27:670–681. https://doi.org/10.1002/stem.20080742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weiss ARR, Dahlke MH (2019) Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 10:1191. https://doi.org/10.3389/fimmu.2019.01191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh JY, Kim MK, Shin MS et al (2008) The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 26:1047–1055. https://doi.org/10.1634/stemcells.2007-0737

    Article  CAS  PubMed  Google Scholar 

  7. Zhang R, Liu Y, Yan K et al (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10:871. https://doi.org/10.1186/1742-2094-10-106

    Article  CAS  Google Scholar 

  8. Abdi R, Fiorina P, Adra CN et al (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767. https://doi.org/10.2337/db08-0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang M, Yuan Q, Xie L (2018) Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018:1–12. https://doi.org/10.1155/2018/3057624

    Article  CAS  Google Scholar 

  10. Wang L-T, Ting C-H, Yen M-L et al (2016) Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 23:76. https://doi.org/10.1186/s12929-016-0289-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. https://doi.org/10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  12. Kinnaird T, Stabile E, Burnett MS et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685. https://doi.org/10.1161/01.RES.0000118601.37875.AC

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Li Y, Katakowski M et al (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786. https://doi.org/10.1002/jnr.10691

    Article  CAS  PubMed  Google Scholar 

  14. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856. https://doi.org/10.1038/nbt1117

    Article  CAS  PubMed  Google Scholar 

  15. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474. https://doi.org/10.1002/art.11365

    Article  PubMed  Google Scholar 

  16. Fellows CR, Matta C, Zakany R et al (2016) Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Front Genet 7:213. https://doi.org/10.3389/fgene.2016.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9:584–594. https://doi.org/10.1038/nrrheum.2013.109

    Article  CAS  PubMed  Google Scholar 

  18. Morrison TJ, Jackson MV, Cunningham EK et al (2017) Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 196:1275–1286. https://doi.org/10.1164/rccm.201701-0170OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tisato V, Naresh K, Girdlestone J et al (2007) Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia 21:1992–1999. https://doi.org/10.1038/sj.leu.2404847

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Zhu C, Ma D et al (2018) Efficacy and safety of mesenchymal stromal cells for the prophylaxis of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. Ann Hematol 97:1941–1950. https://doi.org/10.1007/s00277-018-3384-8

    Article  PubMed  Google Scholar 

  21. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7. https://doi.org/10.1186/s13287-015-0271-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen L, Tredget EE, Wu PYG, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3:e1886. https://doi.org/10.1371/journal.pone.0001886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morrison DE, Aitken JB, de Jonge MD et al (2014) High mitochondrial accumulation of new gadolinium(III) agents within tumour cells. Chem Commun (Camb) 50:2252–2254. https://doi.org/10.1039/c3cc46903d

    Article  CAS  Google Scholar 

  24. Islam MN, Das SR, Emin MT et al (2012) Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765. https://doi.org/10.1038/nm.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jackson MV, Morrison TJ, Doherty DF et al (2016) Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34:2210–2223. https://doi.org/10.1002/stem.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Acquistapace A, Bru T, Lesault P-F et al (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29:812–824. https://doi.org/10.1002/stem.632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huda F, Fan Y, Suzuki M et al (2016) Fusion of human fetal mesenchymal stem cells with “degenerating” cerebellar neurons in spinocerebellar ataxia type 1 model mice. PLoS ONE 11:e0164202. https://doi.org/10.1371/journal.pone.0164202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emani SM, McCully JD (2018) Mitochondrial transplantation: applications for pediatric patients with congenital heart disease. Transl Pediatr 7:169–175. https://doi.org/10.21037/tp.2018.02.02

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ramirez-Barbieri G, Moskowitzova K, Shin B et al (2019) Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion 46:103–115. https://doi.org/10.1016/j.mito.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  30. Clark MA, Shay JW (1982) Mitochondrial transformation of mammalian cells. Nature 295:605–607. https://doi.org/10.1038/295605a0

    Article  CAS  PubMed  Google Scholar 

  31. Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science (80-) 303:1007–1010. https://doi.org/10.1126/science.1093133

    Article  CAS  Google Scholar 

  32. Gerdes H-H, Bukoreshtliev NV, Barroso JFV (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201. https://doi.org/10.1016/j.febslet.2007.03.071

    Article  CAS  PubMed  Google Scholar 

  33. Miliotis S, Nicolalde B, Ortega M et al (2019) Forms of extracellular mitochondria and their impact in health. Mitochondrion 48:16–30. https://doi.org/10.1016/j.mito.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  34. Caicedo A, Aponte PM, Cabrera F et al (2017) Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int 2017:1–23. https://doi.org/10.1155/2017/7610414

    Article  CAS  Google Scholar 

  35. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283–1288. https://doi.org/10.1073/pnas.0510511103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pittenger MF, Discher DE, Péault BM et al (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen Med 4:22. https://doi.org/10.1038/s41536-019-0083-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartolucci J, Verdugo FJ, González PL et al (2017) Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure. Circ Res 121:1192–1204. https://doi.org/10.1161/CIRCRESAHA.117.310712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matas J, Orrego M, Amenabar D et al (2018) Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl Med 8:215–224.https://doi.org/10.1002/sctm.18-0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caplan H, Olson SD, Kumar A et al (2019) Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application. Front Immunol 10:1645. https://doi.org/10.3389/fimmu.2019.01645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Couto PS, Shatirishvili G, Bersenev A, Verter F (2019) First decade of clinical trials and published studies with mesenchymal stromal cells from umbilical cord tissue. Regen Med 14:309–319. https://doi.org/10.2217/rme-2018-0171

    Article  CAS  PubMed  Google Scholar 

  41. Kurte M, Vega-Letter AM, Luz-Crawford P et al (2020) Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Res Ther 11:416. https://doi.org/10.1186/s13287-020-01840-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Velarde F, Castañeda V, Morales E et al (2020) Use of human umbilical cord and its byproducts in tissue regeneration. Front Bioeng Biotechnol 8:117. https://doi.org/10.3389/fbioe.2020.00117

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fan C-G, Zhang Q, Zhou J (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev Reports 7:195–207. https://doi.org/10.1007/s12015-010-9168-8

    Article  Google Scholar 

  44. Veryasov VN, Savilova AM, Buyanovskaya OA et al (2014) Isolation of mesenchymal stromal cells from extraembryonic tissues and their characteristics. Bull Exp Biol Med 157:119–124. https://doi.org/10.1007/s10517-014-2506-0

    Article  CAS  PubMed  Google Scholar 

  45. Mabuchi Y, Matsuzaki Y (2016) Prospective isolation of resident adult human mesenchymal stem cell population from multiple organs. Int J Hematol 103:138–144. https://doi.org/10.1007/s12185-015-1921-y

    Article  CAS  PubMed  Google Scholar 

  46. Laroye C, Gauthier M, Antonot H et al (2019) Mesenchymal stem/stromal cell production compliant with good manufacturing practice: comparison between bone marrow, the gold standard adult source, and Wharton’s Jelly, an extraembryonic source. J Clin Med 8:2207. https://doi.org/10.3390/jcm8122207

    Article  CAS  PubMed Central  Google Scholar 

  47. Du WJ, Chi Y, Yang ZX et al (2016) Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 7:163. https://doi.org/10.1186/s13287-016-0418-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ertl J, Pichlsberger M, Tuca A-C et al (2018) Comparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal wounds. Placenta 65:37–46. https://doi.org/10.1016/j.placenta.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  49. Wu M, Zhang R, Zou Q et al (2018) Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci Rep 8:5014. https://doi.org/10.1038/s41598-018-23396-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng Y, Zhang Y, Ye L et al (2016) Umbilical cord-derived mesenchymal stem cells instruct monocytes towards an il10-producing phenotype by secreting IL6 and HGF. Sci Rep 6:37566. https://doi.org/10.1038/srep37566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301. https://doi.org/10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  52. Mizukami A, Swiech K (2018) Mesenchymal stromal cells: from discovery to manufacturing and commercialization. Stem Cells Int 2018:1–13. https://doi.org/10.1155/2018/4083921

    Article  CAS  Google Scholar 

  53. Li R, Li X-M, Chen J-R (2016) Clinical efficacy and safety of autologous stem cell transplantation for patients with ST-segment elevation myocardial infarction. Ther Clin Risk Manag 12:1171–1189. https://doi.org/10.2147/TCRM.S107199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murata M, Teshima T (2021) Treatment of steroid-refractory acute graft-versus-host disease using commercial mesenchymal stem cell products. Front Immunol 12:724380. https://doi.org/10.3389/fimmu.2021.724380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gebara N, Rossi A, Skovronova R et al (2020) Extracellular vesicles, apoptotic bodies and mitochondria: stem cell bioproducts for organ regeneration. Curr Transplant Reports 7:105–113. https://doi.org/10.1007/s40472-020-00282-2

    Article  Google Scholar 

  56. Yeo RWY, Lai RC, Zhang B et al (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 65:336–341. https://doi.org/10.1016/j.addr.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  57. Mendt M, Rezvani K, Shpall E (2019) Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 54:789–792. https://doi.org/10.1038/s41409-019-0616-z

    Article  PubMed  Google Scholar 

  58. Alcayaga-Miranda F, Varas-Godoy M, Khoury M (2016) Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration. Stem Cells Int 2016:1–11. https://doi.org/10.1155/2016/3409169

    Article  CAS  Google Scholar 

  59. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848. https://doi.org/10.3727/096368915X689622

    Article  PubMed  Google Scholar 

  60. Lai RC, Tan SS, Teh BJ et al (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:1–14. https://doi.org/10.1155/2012/971907

    Article  CAS  Google Scholar 

  61. Nassar W, El-Ansary M, Sabry D et al (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 20:21. https://doi.org/10.1186/s40824-016-0068-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yosef OB, Jacoby E, Gruber N et al (2020) Promising results for kearns-sayre syndrome of first in man treatment by mitochondrial augmentation therapy (457). Neurology 94:457

    Article  Google Scholar 

  63. Almannai M, El-Hattab AW, Ali M et al (2020) Clinical trials in mitochondrial disorders, an update. Mol Genet Metab 131:1–13. https://doi.org/10.1016/j.ymgme.2020.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bottani E, Lamperti C, Prigione A et al (2020) Therapeutic approaches to treat mitochondrial diseases: “one-size-fits-all” and “precision medicine” strategies. Pharmaceutics 12:1083. https://doi.org/10.3390/pharmaceutics12111083

    Article  CAS  PubMed Central  Google Scholar 

  65. Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L et al (2020) A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183:94-109.e23. https://doi.org/10.1016/j.cell.2020.08.031

    Article  CAS  PubMed  Google Scholar 

  66. Brestoff JR, Wilen CB, Moley JR et al (2021) Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab 33:270-282.e8. https://doi.org/10.1016/j.cmet.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  67. Crewe C, Funcke J-B, Li S et al (2021) Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab 33:1853-1868.e11. https://doi.org/10.1016/j.cmet.2021.08.002

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez A-M, Nakhle J, Griessinger E, Vignais M-L (2018) Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle 17:712–721. https://doi.org/10.1080/15384101.2018.1445906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li C, Cheung MKH, Han S et al (2019) Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Biosci Rep 39:BSR20182417. https://doi.org/10.1042/BSR20182417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–373. https://doi.org/10.1038/nature11706

    Article  CAS  PubMed  Google Scholar 

  71. Ahmad T, Mukherjee S, Pattnaik B et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010. https://doi.org/10.1002/embj.201386030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Court AC, Le-Gatt A, Luz-Crawford P et al (2020) Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep 21:e48052. https://doi.org/10.15252/embr.201948052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Phinney DG, Di Giuseppe M, Njah J et al (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6:8472. https://doi.org/10.1038/ncomms9472

    Article  CAS  PubMed  Google Scholar 

  74. Puhm F, Afonyushkin T, Resch U et al (2019) Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ Res 125:43–52. https://doi.org/10.1161/CIRCRESAHA.118.314601

    Article  CAS  PubMed  Google Scholar 

  75. Boudreau LH, Duchez A, Cloutier N et al (2019) Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A 2 to promote in fl ammation. Blood 124:2173–2184. https://doi.org/10.1182/blood-2014-05-573543.A.-C.D

    Article  Google Scholar 

  76. Shi Y, Wang Y, Li Q et al (2018) Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 14:493–507. https://doi.org/10.1038/s41581-018-0023-5

    Article  CAS  PubMed  Google Scholar 

  77. Mistry JJ, Marlein CR, Moore JA et al (2019) ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc Natl Acad Sci USA 116:24610–24619. https://doi.org/10.1073/pnas.1913278116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hofmann AD, Beyer M, Krause-Buchholz U et al (2012) Oxphos supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCS. PLoS ONE 7:e35160. https://doi.org/10.1371/journal.pone.0035160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li Q, Gao Z, Chen Y (2017) The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 8:439–445. https://doi.org/10.1007/s13238-017-0385-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bertolo A, Capossela S, Fränkl G et al (2017) Oxidative status predicts quality in human mesenchymal stem cells. Stem Cell Res Ther 8:1–13. https://doi.org/10.1186/s13287-016-0452-7

    Article  CAS  Google Scholar 

  81. Wang W, Zhang Y, Lu W, Liu K (2015) Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine. PLoS ONE 10:e0120629. https://doi.org/10.1371/journal.pone.0120629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tan J, Xu X, Tong Z et al (2015) Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res 3:1–6. https://doi.org/10.1038/boneres.2015.3

    Article  CAS  Google Scholar 

  83. Kanda Y, Hinata T, Kang SW, Watanabe Y (2011) Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 89:250–258. https://doi.org/10.1016/j.lfs.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  84. Chen C-T, Shih Y-RV, Kuo TK et al (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968. https://doi.org/10.1634/stemcells.2007-0509

    Article  CAS  PubMed  Google Scholar 

  85. Shum LC, White NS, Mills BN et al (2016) Energy metabolism in mesenchymal. Stem Cells 25:114–122. https://doi.org/10.1089/scd.2015.0193

    Article  CAS  Google Scholar 

  86. Zhang Y, Marsboom G, Toth PT, Rehman J (2013) Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS ONE 8:e77077. https://doi.org/10.1371/journal.pone.0077077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pattappa G, Heywood HK, de Bruijn JD, Lee DA (2011) The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 226:2562–2570. https://doi.org/10.1002/jcp.22605

    Article  CAS  PubMed  Google Scholar 

  88. Chiu SP, Lee YW, Wu LY et al (2019) Application of ECIS to assess FCCP-induced changes of MSC micromotion and wound healing migration. Sensors (Switzerland) 19:3210. https://doi.org/10.3390/s19143210

    Article  CAS  Google Scholar 

  89. Mancini OK, Lora M, Cuillerier A et al (2018) Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease. Circ Res 122:255–266. https://doi.org/10.1161/CIRCRESAHA.117.311400

    Article  CAS  Google Scholar 

  90. Guo Y, Chi X, Wang Y et al (2020) Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther 11:245. https://doi.org/10.1186/s13287-020-01704-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S (2018) Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Res Ther 9:298. https://doi.org/10.1186/s13287-018-1012-0

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kitani T, Kami D, Matoba S, Gojo S (2014) Internalization of isolated functional mitochondria: involvement of macropinocytosis. J Cell Mol Med 18:1694–1703. https://doi.org/10.1111/jcmm.12316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao Y, Jiang Z, Delgado E et al (2017) Platelet-derived mitochondria display embryonic stem cell markers and improve pancreatic islet β-cell function in humans. Stem Cells Transl Med 6:1684–1697. https://doi.org/10.1002/sctm.17-0078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Duroux-Richard I, Apparailly F, Khoury M (2021) Mitochondrial microRNAs contribute to macrophage immune functions including differentiation, polarization, and activation. Front Physiol 12:738140. https://doi.org/10.3389/fphys.2021.738140

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–383. https://doi.org/10.1038/nature11707

    Article  CAS  PubMed  Google Scholar 

  96. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560. https://doi.org/10.1016/j.cub.2006.06.054

    Article  CAS  PubMed  Google Scholar 

  97. Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192. https://doi.org/10.1016/j.cub.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  98. Riley JS, Tait SW (2020) Mitochondrial DNA in inflammation and immunity. EMBO Rep 21:e49799. https://doi.org/10.15252/embr.201949799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tiku V, Tan M-W, Dikic I (2020) Mitochondrial functions in infection and immunity. Trends Cell Biol 30:263–275. https://doi.org/10.1016/j.tcb.2020.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peña-Blanco A, García-Sáez AJ (2018) Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS J 285:416–431. https://doi.org/10.1111/febs.14186

    Article  CAS  PubMed  Google Scholar 

  101. Sarasija S, Norman KR (2015) A γ-secretase independent role for presenilin in calcium homeostasis impacts mitochondrial function and morphology in caenorhabditis elegans. Genetics 201:1453–1466. https://doi.org/10.1534/genetics.115.182808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360. https://doi.org/10.1042/EBC20170104

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845. https://doi.org/10.1152/physrev.00030.2008

    Article  CAS  PubMed  Google Scholar 

  105. Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531. https://doi.org/10.1146/annurev-physiol-021115-105011

    Article  CAS  PubMed  Google Scholar 

  106. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117. https://doi.org/10.1016/j.tem.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  107. Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185. https://doi.org/10.1016/j.cub.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dominy JE, Puigserver P (2013) Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol 5:1–16. https://doi.org/10.1101/cshperspect.a015008

    Article  CAS  Google Scholar 

  109. Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial dynamics. Nat Rev Mol Cell Biol 21:204–224. https://doi.org/10.1038/s41580-020-0210-7

    Article  CAS  PubMed  Google Scholar 

  110. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S-890S. https://doi.org/10.3945/ajcn.110.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Luo C, Widlund HR, Puigserver P (2016) PGC-1 coactivators: shepherding the mitochondrial biogenesis of tumors. Trends Cancer 2:619–631. https://doi.org/10.1016/j.trecan.2016.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  112. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta - Mol Cell Res 1813:1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019

    Article  CAS  Google Scholar 

  113. Price NL, Gomes AP, Ling AJY et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690. https://doi.org/10.1016/j.cmet.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jin SM, Youle RJ (2012) PINK1-and Parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799. https://doi.org/10.1242/jcs.093849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sato S, Furuya N (2017) Induction of PINK1/Parkin-Mediated Mitophagy. In: Methods in molecular biology. Humana Press Inc., pp 9–17

  116. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022. https://doi.org/10.1038/s41556-018-0176-2

    Article  CAS  PubMed  Google Scholar 

  117. Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286:19630–19640. https://doi.org/10.1074/jbc.M110.209338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Saito T, Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116:1477–1490. https://doi.org/10.1161/CIRCRESAHA.116.303790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jorgensen C, Khoury M (2021) Musculoskeletal progenitor/stromal cell-derived mitochondria modulate cell differentiation and therapeutical function. Front Immunol 12:606781. https://doi.org/10.3389/fimmu.2021.606781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fillmore N, Huqi A, Jaswal JS et al (2015) Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS ONE 10:e0120257. https://doi.org/10.1371/journal.pone.0120257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shum LC, White NS, Mills BN et al (2016) Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev 25:114–122. https://doi.org/10.1089/scd.2015.0193

    Article  CAS  PubMed  Google Scholar 

  122. Lee JH, Yoon YM, Lee SH (2017) Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt axis. Int J Mol Sci 18:1320. https://doi.org/10.3390/ijms18061320

    Article  CAS  PubMed Central  Google Scholar 

  123. Ho SS, Hung BP, Heyrani N et al (2018) Hypoxic preconditioning of mesenchymal stem cells with subsequent spheroid formation accelerates repair of segmental bone defects. Stem Cells 36:1393–1403. https://doi.org/10.1002/stem.2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee HJ, Jung YH, Choi GE et al (2019) O-cyclic phytosphingosine-1-phosphate stimulates HIF1α-dependent glycolytic reprogramming to enhance the therapeutic potential of mesenchymal stem cells. Cell Death Dis 10:1–21. https://doi.org/10.1038/s41419-019-1823-7

    Article  CAS  Google Scholar 

  125. Simsek T, Kocabas F, Zheng J et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390. https://doi.org/10.1016/j.stem.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu C, Fan L, Cen P et al (2016) Energy metabolism plays a critical role in stem cell maintenance and differentiation. Int J Mol Sci 17:253. https://doi.org/10.3390/ijms17020253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Papa L, Djedaini M, Hoffman R (2019) Mitochondrial role in stemness and differentiation of hematopoietic stem cells. Stem Cells Int 2019:4067162. https://doi.org/10.1155/2019/4067162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42. https://doi.org/10.1038/cdd.2012.81

    Article  CAS  PubMed  Google Scholar 

  129. Davis CO, Kim K-Y, Bushong EA et al (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci 111:9633–9638. https://doi.org/10.1073/pnas.1404651111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang J, Li H, Yao Y et al (2018) Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther 9:1–10. https://doi.org/10.1186/s13287-018-0832-2

    Article  CAS  Google Scholar 

  131. Yao Y, Fan X-L, Jiang D et al (2018) Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cells Reports 11:1120–1135. https://doi.org/10.1016/j.stemcr.2018.09.012

    Article  CAS  Google Scholar 

  132. Boukelmoune N, Chiu GS, Kavelaars A, Heijnen CJ (2018) Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol Commun 6:139. https://doi.org/10.1186/s40478-018-0644-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang Z, Gao Z, Rajthala S et al (2020) Metabolic reprogramming of normal oral fibroblasts correlated with increased glycolytic metabolism of oral squamous cell carcinoma and precedes their activation into carcinoma associated fibroblasts. Cell Mol Life Sci 77:1115–1133. https://doi.org/10.1007/s00018-019-03209-y

    Article  CAS  PubMed  Google Scholar 

  134. Kim MJ, Hwang JW, Yun C-K et al (2018) Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep 8:3330. https://doi.org/10.1038/s41598-018-21539-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cabrera F, Ortega M, Velarde F et al (2019) Primary allogeneic mitochondrial mix (PAMM) transfer/transplant by MitoCeption to address damage in PBMCs caused by ultraviolet radiation. BMC Biotechnol 19:42. https://doi.org/10.1186/s12896-019-0534-6

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cowan DB, Yao R, Thedsanamoorthy JK et al (2017) Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 7:17450. https://doi.org/10.1038/s41598-017-17813-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Levoux J, Prola A, Lafuste P et al (2021) Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming article platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and met. Cell Metab 33:1–17. https://doi.org/10.1016/j.cmet.2020.12.006

    Article  CAS  Google Scholar 

  138. Vignais M-L, Caicedo A, Brondello J-M, Jorgensen C (2017) Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int 2017:1–14. https://doi.org/10.1155/2017/6917941

    Article  CAS  Google Scholar 

  139. Gollihue JL, Rabchevsky AG (2017) Prospects for therapeutic mitochondrial transplantation. Mitochondrion 35:70–79. https://doi.org/10.1016/j.mito.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sinclair KA, Yerkovich ST, Hopkins PM-A, Chambers DC (2016) Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther 7:91. https://doi.org/10.1186/s13287-016-0354-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Plotnikov EY, Khryapenkova TG, Galkina SI et al (2010) Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp Cell Res 316:2447–2455. https://doi.org/10.1016/j.yexcr.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  142. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107. https://doi.org/10.3389/fcell.2016.00107

    Article  PubMed  PubMed Central  Google Scholar 

  143. Grazioli S, Pugin J (2018) Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol 9:832. https://doi.org/10.3389/fimmu.2018.00832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tumburu L, Ghosh-choudhary S, Seifuddin FT et al (2021) Regular article circulating mitochondrial DNA is a proinflammatory DAMP in sickle cell disease. Blood 137:3116–3126. https://doi.org/10.1182/blood.2020009063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nygren JM, Liuba K, Breitbach M et al (2008) Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol 10:584–592. https://doi.org/10.1038/ncb1721

    Article  CAS  PubMed  Google Scholar 

  146. Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928. https://doi.org/10.1083/jcb.201708007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318. https://doi.org/10.1073/pnas.2132126100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Golan K, Singh AK, Kollet O et al (2020) Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 136:2607–2619. https://doi.org/10.1182/blood.2020005399

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dong L-F, Kovarova J, Bajzikova M et al (2017) Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6:e22187. https://doi.org/10.7554/eLife.22187

    Article  PubMed  PubMed Central  Google Scholar 

  150. Quintero OA, DiVito MM, Adikes RC et al (2009) Human myo19 is a novel myosin that associates with mitochondria. Curr Biol 19:2008–2013. https://doi.org/10.1016/j.cub.2009.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Brickley K, Stephenson FA (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286:18079–18092. https://doi.org/10.1074/jbc.M111.236018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chang KT, Niescier RF, Min K-T (2011) Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci 108:15456–15461. https://doi.org/10.1073/pnas.1106862108

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hase K, Kimura S, Takatsu H et al (2009) M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11:1427–1432. https://doi.org/10.1038/ncb1990

    Article  CAS  PubMed  Google Scholar 

  154. Hayakawa K, Esposito E, Wang X et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Marlein CR, Piddock RE, Mistry JJ et al (2019) CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res 79:2285–2297. https://doi.org/10.1158/0008-5472.CAN-18-0773

    Article  CAS  PubMed  Google Scholar 

  156. Ikeda G, Santoso MR, Tada Y et al (2021) Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol 77:1073–1088. https://doi.org/10.1016/j.jacc.2020.12.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Picone P, Porcelli G, Bavisotto CC et al (2021) Synaptosomes: new vesicles for neuronal mitochondrial transplantation. J Nanobiotechnology 19:6. https://doi.org/10.1186/s12951-020-00748-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mobarrez F, Fuzzi E, Gunnarsson I et al (2019) Microparticles in the blood of patients with SLE: size, content of mitochondria and role in circulating immune complexes. J Autoimmun 102:142–149. https://doi.org/10.1016/j.jaut.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  159. Todkar K, Chikhi L, Desjardins V et al (2021) Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat Commun 12:1971. https://doi.org/10.1038/s41467-021-21984-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Levoux J, Prola A, Lafuste P et al (2021) Article platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming article platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and met. Cell Metab 33:1–17. https://doi.org/10.1016/j.cmet.2020.12.006

    Article  CAS  Google Scholar 

  161. Chou SH, Lan J, Esposito E et al (2017) Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 48:2231–2237. https://doi.org/10.1161/STROKEAHA.117.017758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dache ZA, Otandault A, Tanos R et al (2020) Blood contains circulating cell-free respiratory competent mitochondria. Fed Am Soc Exp Biol 34:1–15. https://doi.org/10.1096/fj.201901917RR

    Article  CAS  Google Scholar 

  163. Stephens OR, Grant D, Frimel M et al (2020) Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion 54:102–112. https://doi.org/10.1016/j.mito.2020.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Song X, Hu W, Yu H et al (2020) Existence of circulating mitochondria in human and animal peripheral blood. Int J Mol Sci 21:2122. https://doi.org/10.3390/ijms21062122

    Article  CAS  PubMed Central  Google Scholar 

  165. McCully JD, Emani SM, del Nido PJ (2020) Letter by McCully et al Regarding Article, “Mitochondria Do Not Survive Calcium Overload". Circ Res 126:e56–e57. https://doi.org/10.1161/CIRCRESAHA.120.316832

    Article  CAS  PubMed  Google Scholar 

  166. Orfany A, Arriola CG, Doulamis IP et al (2020) Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg 71:1014–1026. https://doi.org/10.1016/j.jvs.2019.03.079

    Article  PubMed  Google Scholar 

  167. Li X, Zhang Y, Yeung SC et al (2014) Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol 51:455–465. https://doi.org/10.1165/rcmb.2013-0529OC

    Article  CAS  PubMed  Google Scholar 

  168. de Carvalho LRP, Abreu SC, de Castro LL et al (2021) Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis. Crit Care Med 49:e880–e890. https://doi.org/10.1097/CCM.0000000000005056

    Article  CAS  PubMed  Google Scholar 

  169. Rackham CL, Hubber EL, Czajka A et al (2020) Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells 38:574–584. https://doi.org/10.1002/stem.3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Konari N, Nagaishi K, Kikuchi S, Fujimiya M (2019) Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep 9:5184. https://doi.org/10.1038/s41598-019-40163-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gustafsson AB, Gottlieb RA (2007) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343. https://doi.org/10.1093/cvr/cvm005

    Article  CAS  PubMed  Google Scholar 

  172. Cselenyák A, Pankotai E, Horváth EM et al (2010) Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 11:29. https://doi.org/10.1186/1471-2121-11-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu K, Ji K, Guo L et al (2014) Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res 92:10–18. https://doi.org/10.1016/j.mvr.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  174. Han H, Hu J, Yan Q et al (2016) Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep 13:1517–1524. https://doi.org/10.3892/mmr.2015.4726

    Article  CAS  PubMed  Google Scholar 

  175. Zhang Y, Yu Z, Jiang D et al (2016) iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem cell reports 7:749–763. https://doi.org/10.1016/j.stemcr.2016.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Voloboueva LA, Suh SW, Swanson RA, Giffard RG (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J Neurochem 102:1383–1394. https://doi.org/10.1111/j.1471-4159.2007.04634.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Babenko VA, Silachev DN, Zorova LD et al (2015) Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl Med 4:1011–1020. https://doi.org/10.5966/sctm.2015-0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Babenko V, Silachev D, Popkov V et al (2018) Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules 23:687. https://doi.org/10.3390/molecules23030687

    Article  CAS  PubMed Central  Google Scholar 

  179. Alexander JF, Seua AV, Arroyo LD et al (2021) Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics 11:3109–3130. https://doi.org/10.7150/thno.53474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jiang D, Gao F, Zhang Y et al (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7:e2467. https://doi.org/10.1038/cddis.2016.358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ridge SM, Sullivan FJ, Glynn SA (2017) Mesenchymal stem cells: key players in cancer progression. Mol Cancer 16:31. https://doi.org/10.1186/s12943-017-0597-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Amé-Thomas P, Maby-El Hajjami H, Monvoisin C et al (2007) Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 109:693–702. https://doi.org/10.1182/blood-2006-05-020800

    Article  CAS  PubMed  Google Scholar 

  183. Kansy BA, Dißmann PA, Hemeda H et al (2014) The bidirectional tumor - mesenchymal stromal cell interaction promotes the progression of head and neck cancer. Stem Cell Res Ther 5:95. https://doi.org/10.1186/scrt484

    Article  PubMed  PubMed Central  Google Scholar 

  184. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563. https://doi.org/10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  185. Prantl L, Muehlberg F, Navone NM et al (2010) Adipose tissue-derived stem cells promote prostate tumor growth. Prostate 70:1709–1715. https://doi.org/10.1002/pros.21206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen Y-C, Gonzalez ME, Burman B et al (2019) Mesenchymal stem/stromal cell engulfment reveals metastatic advantage in breast cancer. Cell Rep 27:3916-3926.e5. https://doi.org/10.1016/j.celrep.2019.05.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Krueger TE, Thorek DLJ, Meeker AK et al (2019) Tumor-infiltrating mesenchymal stem cells: drivers of the immunosuppressive tumor microenvironment in prostate cancer? Prostate 79:320–330. https://doi.org/10.1002/pros.23738

    Article  CAS  PubMed  Google Scholar 

  188. Aponte PM, Caicedo A (2017) Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int 2017:1–17. https://doi.org/10.1155/2017/5619472

    Article  CAS  Google Scholar 

  189. Marlein CR, Zaitseva L, Piddock RE et al (2017) NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130:1649–1660. https://doi.org/10.1182/blood-2017-03-772939

    Article  CAS  PubMed  Google Scholar 

  190. Sundstrøm T, Prestegarden L, Azuaje F et al (2019) Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis. Acta Neuropathol Commun 7:55. https://doi.org/10.1186/s40478-019-0712-8

    Article  PubMed  PubMed Central  Google Scholar 

  191. Moschoi R, Imbert V, Nebout M et al (2016) Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128:253–264. https://doi.org/10.1182/blood-2015-07-655860

    Article  CAS  PubMed  Google Scholar 

  192. Pasquier J, Guerrouahen BS, Al Thawadi H et al (2013) Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 11:94. https://doi.org/10.1186/1479-5876-11-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Caicedo A, Fritz V, Brondello J-M et al (2015) MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 5:9073. https://doi.org/10.1038/srep09073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Marlein CR, Zaitseva L, Piddock RE et al (2018) PGC-1α driven mitochondrial biogenesis in stromal cells underpins mitochondrial trafficking to leukemic blasts. Leukemia 32:2073–2077. https://doi.org/10.1038/s41375-018-0221-y

    Article  PubMed  Google Scholar 

  195. Vitale I, Manic G, Coussens LM et al (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30:36–50. https://doi.org/10.1016/j.cmet.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  196. Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566. https://doi.org/10.1016/j.cell.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Salem AF, Whitaker-Menezes D, Lin Z et al (2012) Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle 11:2545–2559. https://doi.org/10.4161/cc.20920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ertel A, Tsirigos A, Whitaker-Menezes D et al (2012) Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 11:253–263. https://doi.org/10.4161/cc.11.2.19006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D et al (2012) Metabolic reprogramming and two-compartment tumor metabolism. Cell Cycle 11:3280–3289. https://doi.org/10.4161/cc.21643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Guariento A, Doulamis IP, Duignan T et al (2020) Mitochondrial transplantation for myocardial protection in ex-situ perfused hearts donated after cardio-circulatory death. J Hear Lung Transplant 39:S87. https://doi.org/10.1016/j.healun.2020.01.1319

    Article  Google Scholar 

  201. Guariento A, Blitzer D, Doulamis I et al (2020) Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg 160:e15–e29. https://doi.org/10.1016/j.jtcvs.2019.06.111

    Article  PubMed  Google Scholar 

  202. McCully JD, Cowan DB, Emani SM, del Nido PJ (2017) Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion 34:127–134. https://doi.org/10.1016/j.mito.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  203. Wing A, Fajardo CA, Posey AD et al (2018) Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol Res 6:605–616. https://doi.org/10.1158/2326-6066.CIR-17-0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Patananan AN, Sercel AJ, Wu T et al (2020) Resource pressure-driven mitochondrial transfer pipeline generates mammalian cells of desired genetic combinations and fates ll pressure-driven mitochondrial transfer pipeline generates mammalian cells of desired genetic combinations and fates. Cell Rep 33:108562. https://doi.org/10.1016/j.celrep.2020.108562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhao Y (2012) Stem cell educator therapy and induction of immune balance. Curr Diab Rep 12:517–523. https://doi.org/10.1007/s11892-012-0308-1

    Article  PubMed  Google Scholar 

  206. Emani SM, Piekarski BL, Harrild D et al (2017) Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154:286–289. https://doi.org/10.1016/j.jtcvs.2017.02.018

    Article  PubMed  Google Scholar 

  207. Roushandeh AM, Kuwahara Y, Roudkenar MH (2019) Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology 71:647–663. https://doi.org/10.1007/s10616-019-00302-9

    Article  PubMed  PubMed Central  Google Scholar 

  208. Hough KP, Trevor JL, Strenkowski JG et al (2018) Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol 18:54–64. https://doi.org/10.1016/j.redox.2018.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Perico L, Morigi M, Rota C et al (2017) Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun 8:983. https://doi.org/10.1038/s41467-017-00937-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lin H-C, Liu S-Y, Lai H-S, Lai I-R (2013) Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock 39:304–310. https://doi.org/10.1097/SHK.0b013e318283035f

    Article  CAS  PubMed  Google Scholar 

  211. Moskowitzova K, Shin B, Liu K et al (2019) Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation. J Heart Lung Transplant 38:92–99. https://doi.org/10.1016/j.healun.2018.09.025

    Article  PubMed  Google Scholar 

  212. Shin B, Saeed MY, Esch JJ et al (2019) A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria: safety and efficacy. JAAC 4:871–888. https://doi.org/10.1016/j.jacbts.2019.08.007

    Article  Google Scholar 

  213. Chang J-C, Wu S-L, Liu K-H et al (2016) Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Transl Res 170:40-56.e3. https://doi.org/10.1016/j.trsl.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  214. Chang J-C, Liu K-H, Li Y-C et al (2013) Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery. Neurosignals 21:160–173. https://doi.org/10.1159/000341981

    Article  CAS  PubMed  Google Scholar 

  215. Gollihue JL, Patel SP, Eldahan KC et al (2018) Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma 35:1800–1818. https://doi.org/10.1089/neu.2017.5605

    Article  PubMed  PubMed Central  Google Scholar 

  216. Fu A, Shi X, Zhang H, Fu B (2017) Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front Pharmacol 8:241. https://doi.org/10.3389/fphar.2017.00241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Shi X, Bai H, Zhao M et al (2018) Treatment of acetaminophen-induced liver injury with exogenous mitochondria in mice. Transl Res 196:31–41. https://doi.org/10.1016/j.trsl.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  218. Doulamis IP, Guariento A, Duignan T et al (2020) Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Physiol 319:F403–F413. https://doi.org/10.1152/ajprenal.00255.2020

    Article  CAS  Google Scholar 

  219. Alexander JF, Seua AV, Arroyo LD et al (2021) Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics 11:3109. https://doi.org/10.7150/thno.53474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Chilean National Agency for Investigation and Development: ANID (Agencia Nacional de Investigación y Desarrollo) FONDECYT Regular #1211749 and FONDECYT de Iniciación #11221017, and by ANID—Basal funding for Scientific and Technological Center of Excellence, IMPACT, #FB210024.

Author information

Authors and Affiliations

Authors

Contributions

FV, YH, and MK were involved in reading and editing the manuscript. All the authors drafted the manuscript and approved the final version.

Corresponding authors

Correspondence to Yessia Hidalgo or Maroun Khoury.

Ethics declarations

Conflict of interest

MK is the chief scientific officer of Cells for Cells and Regenero, the Chilean consortium for regenerative medicine. YH received a stipend from Regenero. AC is the chief executive officer of Dragon BioMed with spin-off of the Universidad San Francisco de Quito in regenerative medicine. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velarde, F., Ezquerra, S., Delbruyere, X. et al. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell. Mol. Life Sci. 79, 177 (2022). https://doi.org/10.1007/s00018-022-04207-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04207-3

Keywords

Navigation