Skip to main content

Advertisement

Log in

Metastasis suppressor 1 controls osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Metastasis suppressor 1 (MTSS1) plays an inhibitory role in tumorigenesis and metastasis of a variety of cancers. To date, the function of MTSS1 in the differentiation of marrow stromal progenitor cells remains to be explored. In the current study, we investigated whether and how MTSS1 has a role in osteoblast differentiation and bone homeostasis. Our data showed that MTSS1 mRNA was upregulated during osteoblast differentiation and downregulated in the osteoblastic lineage cells of ovariectomized and aged mice. Functional studies revealed that MTSS1 promoted the osteogenic differentiation from marrow stromal progenitor cells. Mechanistic explorations uncovered that the inactivation of Src and afterward activation of canonical Wnt signaling were involved in osteoblast differentiation induced by MTSS1. The enhanced osteogenic differentiation induced by MTSS1 overexpression was attenuated when Src was simultaneously overexpressed, and conversely, the inhibition of osteogenic differentiation by MTSS1 siRNA was rescued when the Src inhibitor was supplemented to the culture. Finally, the in vivo transfection of MTSS1 siRNA to the marrow of mice significantly reduced the trabecular bone mass, along with the reduction of trabecular osteoblasts, the accumulation of marrow adipocytes, and the increase of phospho-Src-positive cells on the trabeculae. No change in the number of osteoclasts was observed. This study has unraveled that MTSS1 contributes to osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. It also suggests the potential of MTSS1 as a new target for the treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ALP:

Alkaline phosphatase

BMP2:

Bone morphogenetic protein 2

BMSCs:

Bone marrow mesenchymal stem cells

C/EBP:

CCAAT/enhancer binding protein

FBS:

Fetal bovine serum

GSK3β:

Glycogen synthase kinase 3β

HRP:

Horseradish peroxidase

LRP6:

Low-density lipoprotein receptor-related protein 6

MTSS1:

Metastasis suppressor 1

OPN:

Osteopontin

PPARγ:

Peroxisome proliferator-activated receptor γ

Quantitative reverse transcription polymerase chain reaction:

QRT-PCR

Runx2:

Runt-related transcription factor 2

siRNA:

Small interfering RNA

TCF7L2:

Transcription factor 7-like 2

TRAP:

Tartrate-resistant acid phosphatase

References

  1. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23:1128–1139

    Article  CAS  Google Scholar 

  2. Veldhuis-Vlug AG, Rosen CJ (2017) Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism 67:106–114

    Article  CAS  Google Scholar 

  3. Wu M, Chen G, Li YP (2016) TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009

    Article  Google Scholar 

  4. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  Google Scholar 

  5. Alman BA (2015) The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol 11:552–560

    Article  CAS  Google Scholar 

  6. Salazar VS, Gamer LW, Rosen V (2016) BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12:203–221

    Article  CAS  Google Scholar 

  7. Lerner UH, Ohlsson C (2015) The WNT system: background and its role in bone. J Intern Med 277:630–649

    Article  CAS  Google Scholar 

  8. Mota de Sa P, Richard AJ, Hang H, Stephens JM (2017) Transcriptional regulation of adipogenesis. Compr Physiol 7:635–674

    Article  Google Scholar 

  9. Sadie-Van Gijsen H, Hough FS, Ferris WF (2013) Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-gamma2 activity as a central mechanism. Bone 56:255–265

    Article  CAS  Google Scholar 

  10. Xie F, Ye L, Ta M, Zhang L, Jiang WG (2011) MTSS1: a multifunctional protein and its role in cancer invasion and metastasis. Front Biosci (Schol Ed) 3:621–631

    Article  Google Scholar 

  11. Lee YG, Macoska JA, Korenchuk S, Pienta KJ (2002) MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia 4:291–294

    Article  CAS  Google Scholar 

  12. Du P, Wang S, Tang X, An C, Yang Y, Jiang WG (2017) Reduced expression of metastasis suppressor-1 (MTSS1) accelerates progression of human bladder Uroepithelium cell carcinoma. Anticancer Res 37:4499–4505

    CAS  PubMed  Google Scholar 

  13. Du P, Ye L, Ruge F, Yang Y, Jiang WG (2011) Metastasis suppressor-1, MTSS1, acts as a putative tumour suppressor in human bladder cancer. Anticancer Res 31:3205–3212

    CAS  PubMed  Google Scholar 

  14. Wang Y, Liu J, Smith E, Zhou K, Liao J, Yang GY, Tan M, Zhan X (2007) Downregulation of missing in metastasis gene (MIM) is associated with the progression of bladder transitional carcinomas. Cancer Invest 25:79–86

    Article  Google Scholar 

  15. Yu J, Shen W, Gao B, Xu J, Gong B (2020) Metastasis suppressor 1 acts as a tumor suppressor by inhibiting epithelial-to-mesenchymal transition in triple-negative breast cancer. Int J Biol Markers 35:74–81

    Article  CAS  Google Scholar 

  16. Zeleniak AE, Huang W, Fishel ML, Hill R (2018) PTEN-dependent stabilization of MTSS1 inhibits metastatic phenotype in pancreatic ductal adenocarcinoma. Neoplasia 20:12–24

    Article  CAS  Google Scholar 

  17. Chen L, Chen Q, Wu Y, Zhu M, Hu J, Zhuang Z (2021) MTSS1 inhibits colorectal cancer metastasis by regulating the CXCR4/CXCL12 signaling axis. Int J Mol Med. https://doi.org/10.3892/ijmm.2021.4898

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang H, Yu X, Wang X, Li X, Yang S (2017) Missing in metastasis B, regulated by DNMT1, functions as a putative cancer suppressor in human lung giant-cell carcinoma. Acta Biochim Biophys Sin 49:238–245

    Article  CAS  Google Scholar 

  19. Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner W et al (2014) MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 5:3465

    Article  Google Scholar 

  20. Huang XY, Huang ZL, Xu B, Chen Z, Re TJ, Zheng Q, Tang ZY (2016) Elevated MTSS1 expression associated with metastasis and poor prognosis of residual hepatitis B-related hepatocellular carcinoma. J Exp Clin Cancer Res 35:85

    Article  Google Scholar 

  21. Saarikangas J, Mattila PK, Varjosalo M, Bovellan M, Hakanen J, Calzada-Wack J, Tost M, Jennen L, Rathkolb B, Hans W et al (2011) Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia. J Cell Sci 124:1245–1255

    Article  CAS  Google Scholar 

  22. Quinones GA, Jin J, Oro AE (2010) I-BAR protein antagonism of endocytosis mediates directional sensing during guided cell migration. J Cell Biol 189:353–367

    Article  CAS  Google Scholar 

  23. Bershteyn M, Atwood SX, Woo WM, Li M, Oro AE (2010) MIM and cortactin antagonism regulates ciliogenesis and hedgehog signaling. Dev Cell 19:270–283

    Article  CAS  Google Scholar 

  24. Brown AS, Meera P, Altindag B, Chopra R, Perkins EM, Paul S, Scoles DR, Tarapore E, Magri J, Huang H et al (2018) MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proc Natl Acad Sci U S A 115:E12407–E12416

    Article  CAS  Google Scholar 

  25. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  CAS  Google Scholar 

  26. Insogna KL, Sahni M, Grey AB, Tanaka S, Horne WC, Neff L, Mitnick M, Levy JB, Baron R (1997) Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J Clin Invest 100:2476–2485

    Article  CAS  Google Scholar 

  27. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR (1992) Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90:1622–1627

    Article  CAS  Google Scholar 

  28. Marzia M, Sims NA, Voit S, Migliaccio S, Taranta A, Bernardini S, Faraggiana T, Yoneda T, Mundy GR, Boyce BF et al (2000) Decreased c-Src expression enhances osteoblast differentiation and bone formation. J Cell Biol 151:311–320

    Article  CAS  Google Scholar 

  29. Haraguchi K, Nishida A, Ishidate T, Akiyama T (2004) Activation of beta-catenin-TCF-mediated transcription by non-receptor tyrosine kinase v-Src. Biochem Biophys Res Commun 313:841–844

    Article  CAS  Google Scholar 

  30. Karni R, Gus Y, Dor Y, Meyuhas O, Levitzki A (2005) Active Src elevates the expression of beta-catenin by enhancement of cap-dependent translation. Mol Cell Biol 25:5031–5039

    Article  CAS  Google Scholar 

  31. Yokoyama N, Malbon CC (2009) Dishevelled-2 docks and activates Src in a Wnt-dependent manner. J Cell Sci 122:4439–4451

    Article  CAS  Google Scholar 

  32. Zhang QQ, Zhou DL, Lei Y, Zheng L, Chen SX, Gou HJ, Gu QL, He XD, Lan T, Qi CL et al (2015) Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/beta-catenin pathway. Oncotarget 6:3123–3135

    Article  Google Scholar 

  33. Condello S, Cao L, Matei D (2013) Tissue transglutaminase regulates beta-catenin signaling through a c-Src-dependent mechanism. FASEB J 27:3100–3112

    Article  CAS  Google Scholar 

  34. Chen Q, Su Y, Wesslowski J, Hagemann AI, Ramialison M, Wittbrodt J, Scholpp S, Davidson G (2014) Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/beta-catenin signalling. EMBO Rep 15:1254–1267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (NSFC) and Natural Science Foundation of Tianjin City for funding.

Funding

This work was funded by National Natural Science Foundation of China (81871741, 82072389, 81972033, and 81972031) and by Natural Science Foundation of Tianjin City (19JCYBJC25400).

Author information

Authors and Affiliations

Authors

Contributions

MC, LS, YG, and LT performed the experiments. JZ, EZ, and HY analyzed the data. XL supervised the research. BW designed the study, supervised the research, and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Baoli Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The animal experiments were carried out following the National Standard of Animal Care and Use Procedures, and was approved by the Animal Ethics Committee of Tianjin Medical University Chu Hsien-I Memorial Hospital.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 278 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Shan, L., Gan, Y. et al. Metastasis suppressor 1 controls osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. Cell. Mol. Life Sci. 79, 107 (2022). https://doi.org/10.1007/s00018-022-04147-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04147-y

Keywords

Navigation