Skip to main content

Advertisement

Log in

Transcriptional and epigenetic regulation of PD-1 expression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Programmed cell death-1 (PD-1) is a co-inhibitory receptor that plays important roles in regulating T cell immunity and peripheral tolerance. PD-1 signaling prevents T cells from overactivation during acute infections, but it maintains T cell exhaustion during chronic infections. Tumor cells can exploit the PD-1 signaling pathway to evade antitumor immune responses. The PD-1 signaling pathway is also essential for maintaining peripheral tolerance and prevention of autoimmunity. PD-1 expression is strictly and differentially regulated by diverse mechanisms in immune cells. It is activated and repressed by distinct transcription factors in different circumstances. Moreover, epigenetic mechanisms are also involved in regulating PD-1 expression. In this review, we summarize the knowledge of the transcriptional and epigenetic regulation of PD-1 expression during different immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

    Article  CAS  PubMed  Google Scholar 

  2. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242. https://doi.org/10.1111/j.1600-065X.2010.00923.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44(5):955–972. https://doi.org/10.1016/j.immuni.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. New Engl J Med 375(18):1767–1778. https://doi.org/10.1056/NEJMra1514296

    Article  CAS  PubMed  Google Scholar 

  5. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19(7):813–824. https://doi.org/10.1093/intimm/dxm057

    Article  CAS  PubMed  Google Scholar 

  6. Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18(3):153–167. https://doi.org/10.1038/nri.2017.108

    Article  CAS  PubMed  Google Scholar 

  7. LaFleur MW, Muroyama Y, Drake CG, Sharpe AH (2018) Inhibitors of the PD-1 pathway in tumor therapy. J Immunol 200(2):375–383. https://doi.org/10.4049/jimmunol.1701044

    Article  CAS  PubMed  Google Scholar 

  8. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36(4):265–276. https://doi.org/10.1016/j.it.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8(3):239–245. https://doi.org/10.1038/ni1443

    Article  CAS  PubMed  Google Scholar 

  10. Jubel JM, Barbati ZR, Burger C, Wirtz DC, Schildberg FA (2020) The role of PD-1 in acute and chronic infection. Front Immunol 11:487. https://doi.org/10.3389/fimmu.2020.00487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T (2003) PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 198(1):39–50. https://doi.org/10.1084/jem.20022235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499. https://doi.org/10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Catakovic K, Klieser E, Neureiter D, Geisberger R (2017) T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal CCS 15(1):1. https://doi.org/10.1186/s12964-016-0160-z

    Article  CAS  PubMed  Google Scholar 

  14. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687. https://doi.org/10.1038/nature04444

    Article  CAS  PubMed  Google Scholar 

  15. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354. https://doi.org/10.1038/nature05115

    Article  CAS  PubMed  Google Scholar 

  16. Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, Adams WC, Precopio ML, Schacker T, Roederer M, Douek DC, Koup RA (2006) PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 203(10):2281–2292. https://doi.org/10.1084/jem.20061496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12(10):1198–1202. https://doi.org/10.1038/nm1482

    Article  CAS  PubMed  Google Scholar 

  18. Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ (2015) Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 212(7):1125–1137. https://doi.org/10.1084/jem.20142237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iwai Y, Hamanishi J, Chamoto K, Honjo T (2017) Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 24(1):26. https://doi.org/10.1186/s12929-017-0329-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355. https://doi.org/10.1126/science.aar4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilky BA (2019) Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol Rev 290(1):6–23. https://doi.org/10.1111/imr.12766

    Article  CAS  PubMed  Google Scholar 

  22. Wakabayashi G, Lee YC, Luh F, Kuo CN, Chang WC, Yen Y (2019) Development and clinical applications of cancer immunotherapy against PD-1 signaling pathway. J Biomed Sci 26(1):96. https://doi.org/10.1186/s12929-019-0588-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151. https://doi.org/10.1016/s1074-7613(00)80089-8

    Article  CAS  PubMed  Google Scholar 

  24. Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Azuma M, Iwai H, Khoury SJ, Auchincloss H Jr, Sayegh MH (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198(1):63–69. https://doi.org/10.1084/jem.20022125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, Azuma M, Yagita H, Sayegh MH, Khoury SJ (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198(1):71–78. https://doi.org/10.1084/jem.20022119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR (2008) Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol 181(4):2513–2521. https://doi.org/10.4049/jimmunol.181.4.2513

    Article  CAS  PubMed  Google Scholar 

  27. Reynoso ED, Elpek KG, Francisco L, Bronson R, Bellemare-Pelletier A, Sharpe AH, Freeman GJ, Turley SJ (2009) Intestinal tolerance is converted to autoimmune enteritis upon PD-1 ligand blockade. J Immunol 182(4):2102–2112. https://doi.org/10.4049/jimmunol.0802769

    Article  CAS  PubMed  Google Scholar 

  28. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32(4):666–669. https://doi.org/10.1038/ng1020

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST (2003) Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 62(6):492–497. https://doi.org/10.1046/j.1399-0039.2003.00136.x

    Article  CAS  PubMed  Google Scholar 

  30. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Maurer M, Wiendl H (2005) A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 58(1):50–57. https://doi.org/10.1002/ana.20514

    Article  CAS  PubMed  Google Scholar 

  31. James ES, Harney S, Wordsworth BP, Cookson WO, Davis SJ, Moffatt MF (2005) PDCD1: a tissue-specific susceptibility locus for inherited inflammatory disorders. Genes Immun 6(5):430–437. https://doi.org/10.1038/sj.gene.6364223

    Article  CAS  PubMed  Google Scholar 

  32. Wartewig T, Kurgyis Z, Keppler S, Pechloff K, Hameister E, Ollinger R, Maresch R, Buch T, Steiger K, Winter C, Rad R, Ruland J (2017) PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552(7683):121–125. https://doi.org/10.1038/nature24649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH (2006) Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 203(10):2223–2227. https://doi.org/10.1084/jem.20061800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27(4):670–684. https://doi.org/10.1016/j.immuni.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  35. Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE, Wei Z, Lu P, Austin JW, Riley JL, Boss JM, Ahmed R (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35(3):400–412. https://doi.org/10.1016/j.immuni.2011.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oestreich KJ, Yoon H, Ahmed R, Boss JM (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 181(7):4832–4839. https://doi.org/10.4049/jimmunol.181.7.4832

    Article  CAS  PubMed  Google Scholar 

  37. Xiao G, Deng A, Liu H, Ge G, Liu X (2012) Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc Natl Acad Sci USA 109(38):15419–15424. https://doi.org/10.1073/pnas.1206370109

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cho HY, Lee SW, Seo SK, Choi IW, Choi I, Lee SW (2008) Interferon-sensitive response element (ISRE) is mainly responsible for IFN-alpha-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochem Biophys Acta 1779(12):811–819. https://doi.org/10.1016/j.bbagrm.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  39. Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T, Honjo T (2011) IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186(5):2772–2779. https://doi.org/10.4049/jimmunol.1003208

    Article  CAS  PubMed  Google Scholar 

  40. Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, Cui G, Li MO, Kaech SM (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41(5):802–814. https://doi.org/10.1016/j.immuni.2014.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bally AP, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, Boss JM (2015) NF-kappaB regulates PD-1 expression in macrophages. J Immunol 194(9):4545–4554. https://doi.org/10.4049/jimmunol.1402550

    Article  CAS  PubMed  Google Scholar 

  42. Bally AP, Tang Y, Lee JT, Barwick BG, Martinez R, Evavold BD, Boss JM (2017) Conserved region C functions to regulate PD-1 expression and subsequent CD8 T cell memory. J Immunol 198(1):205–217. https://doi.org/10.4049/jimmunol.1601464

    Article  CAS  PubMed  Google Scholar 

  43. Mathieu M, Cotta-Grand N, Daudelin JF, Thebault P, Labrecque N (2013) Notch signaling regulates PD-1 expression during CD8(+) T-cell activation. Immunol Cell Biol 91(1):82–88. https://doi.org/10.1038/icb.2012.53

    Article  CAS  PubMed  Google Scholar 

  44. Lu P, Youngblood BA, Austin JW, Mohammed AU, Butler R, Ahmed R, Boss JM (2014) Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med 211(3):515–527. https://doi.org/10.1084/jem.20130208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS, Wherry EJ (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12(7):663–671. https://doi.org/10.1038/ni.2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Austin JW, Lu P, Majumder P, Ahmed R, Boss JM (2014) STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J Immunol 192(10):4876–4886. https://doi.org/10.4049/jimmunol.1302750

    Article  CAS  PubMed  Google Scholar 

  47. Hou C, Zhao H, Tanimoto K, Dean A (2008) CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci USA 105(51):20398–20403. https://doi.org/10.1073/pnas.0808506106

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747. https://doi.org/10.1146/annurev.immunol.15.1.707

    Article  CAS  PubMed  Google Scholar 

  49. Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9(10):1140–1147. https://doi.org/10.1038/ni.1649

    Article  CAS  PubMed  Google Scholar 

  50. Cho OH, Shin HM, Miele L, Golde TE, Fauq A, Minter LM, Osborne BA (2009) Notch regulates cytolytic effector function in CD8+ T cells. J Immunol 182(6):3380–3389. https://doi.org/10.4049/jimmunol.0802598

    Article  CAS  PubMed  Google Scholar 

  51. Kuijk LM, Verstege MI, Rekers NV, Bruijns SC, Hooijberg E, Roep BO, de Gruijl TD, van Kooyk Y, Unger WW (2013) Notch controls generation and function of human effector CD8+ T cells. Blood 121(14):2638–2646. https://doi.org/10.1182/blood-2012-07-442962

    Article  CAS  PubMed  Google Scholar 

  52. Pan T, Liu Z, Yin J, Zhou T, Liu J, Qu H (2015) Notch signaling pathway was involved in regulating programmed cell death 1 expression during sepsis-induced immunosuppression. Mediators Inflamm 2015:539841. https://doi.org/10.1155/2015/539841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Agnellini P, Wolint P, Rehr M, Cahenzli J, Karrer U, Oxenius A (2007) Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc Natl Acad Sci USA 104(11):4565–4570. https://doi.org/10.1073/pnas.0610335104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, Jacob J, Calame K, Kaech SM (2009) Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31(2):296–308. https://doi.org/10.1016/j.immuni.2009.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kallies A, Xin A, Belz GT, Nutt SL (2009) Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 31(2):283–295. https://doi.org/10.1016/j.immuni.2009.06.021

    Article  CAS  PubMed  Google Scholar 

  56. Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL, Wherry EJ (2009) A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity 31(2):309–320. https://doi.org/10.1016/j.immuni.2009.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J, Crotty S (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325(5943):1006–1010. https://doi.org/10.1126/science.1175870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cretney E, Xin A, Shi W, Minnich M, Masson F, Miasari M, Belz GT, Smyth GK, Busslinger M, Nutt SL, Kallies A (2011) The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12(4):304–311. https://doi.org/10.1038/ni.2006

    Article  CAS  PubMed  Google Scholar 

  59. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. https://doi.org/10.1038/ng1089

    Article  CAS  PubMed  Google Scholar 

  60. Luo C, Hajkova P, Ecker JR (2018) Dynamic DNA methylation: In the right place at the right time. Science 361(6409):1336–1340. https://doi.org/10.1126/science.aat6806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McPherson RC, Konkel JE, Prendergast CT, Thomson JP, Ottaviano R, Leech MD, Kay O, Zandee SE, Sweenie CH, Wraith DC, Meehan RR, Drake AJ, Anderton SM (2014) Epigenetic modification of the PD-1 (Pdcd1) promoter in effector CD4(+) T cells tolerized by peptide immunotherapy. eLife. https://doi.org/10.7554/eLife.03416

    Article  PubMed  PubMed Central  Google Scholar 

  62. Youngblood B, Noto A, Porichis F, Akondy RS, Ndhlovu ZM, Austin JW, Bordi R, Procopio FA, Miura T, Allen TM, Sidney J, Sette A, Walker BD, Ahmed R, Boss JM, Sekaly RP, Kaufmann DE (2013) Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J Immunol 191(2):540–544. https://doi.org/10.4049/jimmunol.1203161

    Article  CAS  PubMed  Google Scholar 

  63. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13(3):263–273. https://doi.org/10.1016/s0955-0674(00)00208-8

    Article  CAS  PubMed  Google Scholar 

  64. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  65. Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K (2000) Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol 20(7):2592–2603. https://doi.org/10.1128/mcb.20.7.2592-2603.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gyory I, Wu J, Fejer G, Seto E, Wright KL (2004) PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol 5(3):299–308. https://doi.org/10.1038/ni1046

    Article  CAS  PubMed  Google Scholar 

  67. Su ST, Ying HY, Chiu YK, Lin FR, Chen MY, Lin KI (2009) Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol 29(6):1421–1431. https://doi.org/10.1128/MCB.01158-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bally APR, Neeld DK, Lu P, Majumder P, Tang Y, Barwick BG, Wang Q, Boss JM (2020) PD-1 expression during acute infection is repressed through an LSD1-blimp-1 axis. J Immunol 204(2):449–458. https://doi.org/10.4049/jimmunol.1900601

    Article  CAS  PubMed  Google Scholar 

  69. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107(50):21931–21936. https://doi.org/10.1073/pnas.1016071107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Funding for Top-notch Personnel granted to PL from Shandong First Medical University.

Author information

Authors and Affiliations

Authors

Contributions

PL had the idea for this review and provided the final approval of the version to be published. ZC and YL wrote the manuscript. YY generated the figures. PL and BL revised the manuscript. All the authors have read and approved the final version of this review.

Corresponding author

Correspondence to Peiyuan Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Z., Lu, Y., Yang, Y. et al. Transcriptional and epigenetic regulation of PD-1 expression. Cell. Mol. Life Sci. 78, 3239–3246 (2021). https://doi.org/10.1007/s00018-020-03737-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03737-y

Keywords

Navigation