Skip to main content

Advertisement

Log in

Biological roles of LSD1 beyond its demethylase activity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

It is well-established that Lysine-specific demethylase 1 (LSD1, also known as KDM1A) roles as a lysine demethylase canonically acting on H3K4me1/2 and H3K9me1/2 for regulating gene expression. Though the discovery of non-histone substrates methylated by LSD1 has largely expanded the functions of LSD1 as a typical demethylase, recent groundbreaking studies unveiled its non-catalytic functions as a second life for this demethylase. We and others found that LSD1 is implicated in the interaction with a line of proteins to exhibit additional non-canonical functions in a demethylase-independent manner. Here, we present an integrated overview of these recent literatures charging LSD1 with unforeseen functions to re-evaluate and summarize its non-catalytic biological roles beyond the current understanding of its demethylase activity. Given LSD1 is reported to be ubiquitously overexpressed in a variety of tumors, it has been generally considered as an innovative target for cancer therapy. We anticipate that these non-canonical functions of LSD1 will arouse the consideration that extending the LSD1-based drug discovery to targeting LSD1 protein interactions non-catalytically, not only its demethylase activity, may be a novel strategy for cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

AML:

Acute myeloid leukemia

AOL:

Amine oxidase-like

CoREST:

REST (RE1-silencing transcription factor) corepressor

CPD:

Cdc4 phosphodegron

CREB:

CAMP-response element-binding protein

CtBP:

C-terminal-binding protein 1

Dnmt1:

DNA methyltransferase 1

E2F1:

Transcription factor

EMT:

Epithelial-to-mesenchymal transition

ER:

Estrogen receptor

ERRα:

Estrogen-related receptor α

GFI:

Growth factor independence

H3K4me1/2:

Mono- and di-methylated histone 3 lysine 4

H3K9me1/2:

Mono- and di-methylated histone 3 lysine 9

H4K20me2:

Di-methylated histone 4 lysine 20

HIF-1α:

Hypoxia-inducible factor-1

LSD1:

Lysine-specific demethylase 1

MAO:

Monoamine oxidase

MEF2:

Myocyte enhancer factor 2

NHEJ:

Nonhomologous end-joining

NuRD:

Nucleosome remodeling and deacetylase

PTMs:

Post-translational modifications

SCF:

SKP1-CUL1-F-box protein

STAT3:

Signal transducer and activator of transcription 3

SQSTM1:

Sequestasome 1

References

  1. Shi Y et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    CAS  PubMed  Google Scholar 

  2. Shi YJ et al (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19(6):857–864

    CAS  PubMed  Google Scholar 

  3. Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435

    CAS  PubMed  Google Scholar 

  4. Laurent B et al (2015) A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell 57(6):957–970

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Metzger E et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439

    CAS  PubMed  Google Scholar 

  6. Wang J et al (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446(7138):882–887

    CAS  PubMed  Google Scholar 

  7. Huang J et al (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449(7158):105–108

    CAS  PubMed  Google Scholar 

  8. He Y et al (2018) LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation. Oncogene 37(4):534–543

    CAS  PubMed  Google Scholar 

  9. Zhang J et al (2011) Cyclophosphamide perturbs cytosine methylation in Jurkat-T cells through LSD1-mediated stabilization of DNMT1 protein. Chem Res Toxicol 24(11):2040–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee JY et al (2017) LSD1 demethylates HIF1alpha to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis. Oncogene 36(39):5512–5521

    CAS  PubMed  Google Scholar 

  11. Yang JB et al (2010) Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci USA 107(50):21499–21504

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lan F, Nottke AC, Shi Y (2008) Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20(3):316–325

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambrosio S, Sacca CD, Majello B (2017) Epigenetic regulation of epithelial to mesenchymal transition by the Lysine-specific demethylase LSD1/KDM1A. Biochim Biophys Acta Gene Regul Mech 1860(9):905–910

    CAS  PubMed  Google Scholar 

  14. Lv S et al (2010) LSD1 is required for chromosome segregation during mitosis. Eur J Cell Biol 89(7):557–563

    CAS  PubMed  Google Scholar 

  15. Sakamoto A et al (2015) Lysine demethylase LSD1 coordinates glycolytic and mitochondrial metabolism in hepatocellular carcinoma cells. Cancer Res 75(7):1445–1456

    CAS  PubMed  Google Scholar 

  16. Whyte WA et al (2012) Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482(7384):221–225

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Amente S, Lania L, Majello B (2013) The histone LSD1 demethylase in stemness and cancer transcription programs. Biochim Biophys Acta 1829(10):981–986

    CAS  PubMed  Google Scholar 

  18. Lan H et al (2019) LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity. Proc Natl Acad Sci USA 116(25):12311–12320

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chao A et al (2017) Lysine-specific demethylase 1 (LSD1) destabilizes p62 and inhibits autophagy in gynecologic malignancies. Oncotarget 8(43):74434–74450

    PubMed  PubMed Central  Google Scholar 

  20. Si W, Zhao Y, Zhou J, Zhang Q, Zhang Y (2019) The coordination between ZNF217 and LSD1 contributes to hepatocellular carcinoma progress and is negatively regulated by miR-101. Exp Cell Res 379(1):1–10

    CAS  PubMed  Google Scholar 

  21. Aravind L, Iyer LM (2002) The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol 3(8):reserch0039-1

    Google Scholar 

  22. Chen Y et al (2006) Crystal structure of human histone lysine-specific demethylase 1 (LSD1). P Natl Acad Sci USA 103(38):13956–13961

    CAS  Google Scholar 

  23. Niwa H, Umehara T (2017) Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics 12(5):340–352

    PubMed  PubMed Central  Google Scholar 

  24. Fang R et al (2013) LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell 49(3):558–570

    CAS  PubMed  Google Scholar 

  25. Zhang Q et al (2013) Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Re 23(2):225–241

    CAS  Google Scholar 

  26. Peng B et al (2015) Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Nucleic Acids Res 43(12):5936–5947

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Metzger E et al (2016) Assembly of methylated KDM1A and CHD1 drives androgen receptor-dependent transcription and translocation. Nat Struct Mol Biol 23(2):132–139

    CAS  PubMed  Google Scholar 

  28. Stavropoulos P, Blobel G, Hoelz A (2006) Crystal structure and mechanism of human lysine-specific demethylase-1. Nat Struct Mol Biol 13(7):626–632

    CAS  PubMed  Google Scholar 

  29. Shi Y et al (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422(6933):735–738

    CAS  PubMed  Google Scholar 

  30. Wang Y et al (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4):660–672

    CAS  PubMed  Google Scholar 

  31. Perillo B et al (2008) DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 319(5860):202–206

    CAS  PubMed  Google Scholar 

  32. Cai CM et al (2014) Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep 9(5):1618–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J et al (2015) LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci 18(9):1256–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hojfeldt JW, Agger K, Helin K (2013) Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 12(12):917–930

    CAS  PubMed  Google Scholar 

  35. Saleque S, Kim JW, Rooke HM, Orkin SH (2007) Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 27(4):562–572

    CAS  PubMed  Google Scholar 

  36. Wu ZQ et al (2012) Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA 109(41):16654–16659

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin YW et al (2010) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. Embo J 29(11):1803–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferrari-Amorotti G et al (2013) Inhibiting interactions of lysine demethylase LSD1 with snail/slug blocks cancer cell invasion. Cancer Res 73(1):235–245

    CAS  PubMed  Google Scholar 

  39. Egolf S et al (2019) LSD1 inhibition promotes epithelial differentiation through derepression of fate-determining transcription factors. Cell Rep 28(8):1981

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Maiques-Diaz A et al (2018) Enhancer activation by pharmacologic displacement of LSD1 from GFI1 induces differentiation in acute myeloid leukemia. Cell Rep 22(13):3641–3659

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Majello B, Gorini F, Sacca CD, Amente S (2019) Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. Cancers 11(3):324

    CAS  PubMed Central  Google Scholar 

  42. Shi Y (2007) Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 8(11):829–833

    CAS  PubMed  Google Scholar 

  43. Zheng YC et al (2015) A Systematic review of histone lysine-specific demethylase 1 and its inhibitors. Med Res Rev 35(5):1032–1071

    CAS  PubMed  Google Scholar 

  44. Cho HS et al (2011) Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res 71(3):655–660

    CAS  PubMed  Google Scholar 

  45. Kontaki H, Talianidis I (2010) Lysine methylation regulates E2F1-induced cell death. Mol Cell 39(1):152–160

    CAS  PubMed  Google Scholar 

  46. Baek SH, Kim KI (2016) Regulation of HIF-1 alpha stability by lysine methylation. Bmb Rep 49(5):245–246

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sheng W et al (2018) LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174(3):549–563e519

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lan H et al (2019) LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity. Proc Natl Acad Sci USA 116:12311–12320

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8(2):83–93

    CAS  PubMed  Google Scholar 

  50. Wang Z, Liu P, Inuzuka H, Wei W (2014) Roles of F-box proteins in cancer. Nat Rev Cancer 14(4):233–247

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Horard B, Vanacker JM (2003) Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. J Mol Endocrinol 31(3):349–357

    CAS  PubMed  Google Scholar 

  52. Carnesecchi J et al (2017) ERRalpha induces H3K9 demethylation by LSD1 to promote cell invasion. Proc Natl Acad Sci USA 114(15):3909–3914

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Carnesecchi J, Cerutti C, Vanacker JM, Forcet C (2017) ERR alpha protein is stabilized by LSD1 in a demethylation-independent manner. PLoS One 12(11):e0188871

    PubMed  PubMed Central  Google Scholar 

  54. Moscat J, Diaz-Meco MT (2009) p62 at the Crossroads of Autophagy, Apoptosis, and Cancer. Cell 137(6):1001–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37(6):230–236

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Green SM, Mostaghel EA, Nelson PS (2012) Androgen action and metabolism in prostate cancer. Mol Cell Endocrinol 360(1–2):3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yuan X et al (2014) Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 33(22):2815–2825

    CAS  PubMed  Google Scholar 

  58. Sehrawat A et al (2018) LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Cancer Res 78(13):E4179–E4188

    Google Scholar 

  59. Mohammad HP et al (2015) A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28(1):57–69

    CAS  PubMed  Google Scholar 

  60. McGrath JP et al (2016) Pharmacological inhibition of the histone lysine demethylase KDM1A suppresses the growth of multiple acute myeloid leukemia subtypes. Cancer Res 76(7):1975–1988

    CAS  PubMed  Google Scholar 

  61. Fiskus W et al (2014) Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia 28(11):2155–2164

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Theisen ER et al (2014) Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma. Bmc Cancer 14:752

    PubMed  PubMed Central  Google Scholar 

  63. Kahl P et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66(23):11341–11347

    CAS  PubMed  Google Scholar 

  64. Schulte JH et al (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69(5):2065–2071

    CAS  PubMed  Google Scholar 

  65. Kauffman EC et al (2011) Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol Carcinog 50(12):931–944

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Harris WJ et al (2012) The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21(4):473–487

    CAS  PubMed  Google Scholar 

  67. Lv T et al (2012) Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS ONE 7(4):e35065

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu X, Zhang P, Yu B (2017) Advances toward LSD1 inhibitors for cancer therapy. Future Med Chem 9(11):1227–1242

    CAS  PubMed  Google Scholar 

  69. Hosseini A, Minucci S (2017) A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 9(8):1123–1142

    CAS  PubMed  Google Scholar 

  70. Deshaies RJ (2015) Protein degradation: prime time for PROTACs. Nat Chem Biol 11(9):634–635

    CAS  PubMed  Google Scholar 

  71. Lan H, Sun Y (2019) FBXW7 E3 ubiquitin ligase: degrading, not degrading, or being degraded. Protein Cell 10:861–863

    PubMed  PubMed Central  Google Scholar 

  72. Wang J et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129

    CAS  PubMed  Google Scholar 

  73. Zhang X et al (2013) Regulation of estrogen receptor alpha by histone methyltransferase SMYD2-mediated protein methylation. Proc Natl Acad Sci USA 110(43):17284–17289

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nair SS, Li DQ, Kumar R (2013) A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell 49(4):704–718

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Natural Science Foundation of Zhejiang Province (20160171) (YZW), by the Ningbo Natural Science Foundation, China Grant (No. 2016A610148) (ZYY), and by the Medical Scientific Research Foundation of Zhejiang Province, China (Grant No. 2018KY689) (ZYY). Authors’ contributions: HYL had the idea for the article and providing the final approval of the version to be published. YXL was involved in performed the literature search and revision work, FYG was involved in drafting the manuscript. XXW and ZYY were involved in checking the language problems. YZW was involved in revising the manuscript critically for important scientific content. And the authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuezhen Wang or Huiyin Lan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Lin, Y., Wang, Z. et al. Biological roles of LSD1 beyond its demethylase activity. Cell. Mol. Life Sci. 77, 3341–3350 (2020). https://doi.org/10.1007/s00018-020-03489-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03489-9

Keywords

Navigation