Skip to main content

Advertisement

Log in

Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ande SR, Xu YXZ, Mishra S (2017) Prohibitin: a potential therapeutic target in tyrosine kinase signaling. Signal Transduct Target Ther 2:17059. https://doi.org/10.1038/sigtrans.2017.59

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chowdhury D, Kumar D, Sarma P, Tangutur AD, Bhadra MP (2017) PHB in Cardiovascular and other diseases: present knowledge and implications. Curr Drug Targets 18(16):1836–1851. https://doi.org/10.2174/1389450117666160824161225

    Article  PubMed  CAS  Google Scholar 

  3. Koushyar S, Jiang WG, Dart DA (2015) Unveiling the potential of prohibitin in cancer. Cancer Lett 369(2):316–322. https://doi.org/10.1016/j.canlet.2015.09.012

    Article  PubMed  CAS  Google Scholar 

  4. Peng YT, Chen P, Ouyang RY, Song L (2015) Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis 20(9):1135–1149. https://doi.org/10.1007/s10495-015-1143-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Theiss AL (1813) Sitaraman SV (2011) The role and therapeutic potential of prohibitin in disease. Biochim Biophys Acta 6:1137–1143. https://doi.org/10.1016/j.bbamcr.2011.01.033

    Article  CAS  Google Scholar 

  6. Thuaud F, Ribeiro N, Nebigil CG, Desaubry L (2013) Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol 20(3):316–331. https://doi.org/10.1016/j.chembiol.2013.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sripathi SR, Sylvester O, He WL, Moser T, Um JY, Lamoke F, Ramakrishna W, Bernstein PS, Bartoli M, Jahng WJ (2016) Prohibitin as the molecular binding switch in the retinal pigment epithelium. Protein J 35(1):1–16. https://doi.org/10.1007/s10930-015-9641-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yoshinaka T, Kosako H, Yoshizumi T, Furukawa R, Hirano Y, Kuge O, Tamada T, Koshiba T (2019) Structural basis of mitochondrial scaffolds by prohibitin complexes: insight into a role of the coiled-coil region. iScience 19:1065–1078. https://doi.org/10.1016/j.isci.2019.08.056

  9. Ande SR, Mishra S (2009) Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem Biophys Res Commun 390(3):1023–1028. https://doi.org/10.1016/j.bbrc.2009.10.101

    Article  PubMed  CAS  Google Scholar 

  10. Gomez L, Paillard M, Price M, Chen Q, Teixeira G, Spiegel S, Lesnefsky EJ (2011) A novel role for mitochondrial sphingosine-1-phosphate produced by sphingosine kinase-2 in PTP-mediated cell survival during cardioprotection. Basic Res Cardiol 106(6):1341–1353. https://doi.org/10.1007/s00395-011-0223-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. https://www.phosphosite.org/homeAction

  12. Jiang L, Dong P, Zhang Z, Li C, Li Y, Liao Y, Li X, Wu Z, Guo S, Mai S, Xie D, Liu Z, Zhou F (2015) Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells. Cell Death Dis 6:e1660. https://doi.org/10.1038/cddis.2015.40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ho MY, Liang CM, Liang SM (2015) MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis. Oncotarget 6(1):381–393. https://doi.org/10.18632/oncotarget.2804

    Article  PubMed  Google Scholar 

  14. Ande SR, Gu YY, Nyomba BLG, Mishra S (2009) Insulin induced phosphorylation of prohibitin at tyrosine114 recruits Shp1. Biochim Biophys Acta-Mol Cell Res 1793(8):1372–1378. https://doi.org/10.1016/j.bbamcr.2009.05.008

    Article  CAS  Google Scholar 

  15. Chowdhury I, Thomas K, Zeleznik A, Thompson WE (2016) Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation. J Mol Endocrinol 56(4):325–336. https://doi.org/10.1530/jme-15-0278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim DK, Kim HS, Kim AR, Jang GH, Kim HW, Park YH, Kim B, Park YM, Beaven MA, Kim YM, Choi WS (2013) The Scaffold protein prohibitin is required for antigen-stimulated signaling in mast cells. Sci Signaling. https://doi.org/10.1126/scisignal.2004098

  17. Ande SR, Mishra S (2010) Palmitoylation of prohibitin at cysteine 69 facilitates its membrane translocation and interaction with Eps 15 homology domain protein 2 (EHD2). Biochem Cell Biol 88(3):553–558. https://doi.org/10.1139/o09-177

    Article  PubMed  CAS  Google Scholar 

  18. Zhu B, Zhai JJ, Zhu HN, Kyprianou N (2010) Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate 70(1):17–26. https://doi.org/10.1002/pros.21033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4(179):15. https://doi.org/10.1126/scisignal.2001497

    Article  CAS  Google Scholar 

  20. Ande SR, Moulik S, Mishra S (2009) Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch. PLoS ONE 4(2):10. https://doi.org/10.1371/journal.pone.0004586

    Article  CAS  Google Scholar 

  21. Kartha GK, Moshal KS, Sen U, Joshua IG, Tyagi N, Steed MM, Tyagi SC (2008) Renal mitochondrial damage and protein modification in type-2 diabetes. Acta Diabetol 45(2):75–81. https://doi.org/10.1007/s00592-008-0025-z

    Article  PubMed  CAS  Google Scholar 

  22. Wang H, Zhou Y, Oyang L, Han Y, Xia L, Lin J, Tang Y, Su M, Tan S, Tian Y, Chen X, Luo X, Liang J, Rao S, Wang Y, Xiong W, Zeng Z, Wang H, Li G, Liao Q (2019) LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-kappaB activity in nasopharyngeal carcinoma. Oncogene. https://doi.org/10.1038/s41388-019-0778-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sileno S, D'Oria V, Stucchi R, Alessio M, Petrini S, Bonetto V, Maechler P, Bertuzzi F, Grasso V, Paolella K, Barbetti F, Massa O (2014) A possible role of transglutaminase 2 in the nucleus of INS-1E and of cells of human pancreatic islets. J Proteomics 96:314–327. https://doi.org/10.1016/j.jprot.2013.11.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Battaglia G, Farrace MG, Mastroberardino PG, Viti I, Fimia GM, Van Beeumen J, Devreese B, Melino G, Molinaro G, Busceti CL, Biagioni F, Nicoletti F, Piacentini M (2007) Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. J Neurochem 100(1):36–49. https://doi.org/10.1111/j.1471-4159.2006.04140.x

    Article  PubMed  CAS  Google Scholar 

  25. Orru S, Caputo I, D'Amato A, Ruoppolo M, Esposito C (2003) Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. J Biol Chem 278(34):31766–31773. https://doi.org/10.1074/jbc.M305080200

    Article  PubMed  CAS  Google Scholar 

  26. Suh SK, Hood BL, Kim BJ, Conrads TP, Veenstra TD, Song BJ (2004) Identification of oxidized mitochondria proteins in alcohol-exposed human hepatoma cells and mouse liver. Proteomics 4(11):3401–3412. https://doi.org/10.1002/pmic.200400971

    Article  PubMed  CAS  Google Scholar 

  27. Kosgodage US, Uysal-Onganer P, MacLatchy A, Kraev I, Chatterton NP, Nicholas AP, Inal JM, Lange S (2019) Peptidylarginine deiminases post-translationally deiminate prohibitin and modulate extracellular vesicle release and MicroRNAs in glioblastoma multiforme. Int J Mol Sci 20(1):23. https://doi.org/10.3390/ijms20010103

    Article  CAS  Google Scholar 

  28. Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D (2010) Skp2B attenuates p53 function by inhibiting prohibitin. EMBO Rep 11(3):220–225. https://doi.org/10.1038/embor.2010.2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D (2011) Skp2B Overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. Plos One 6(8):1. https://doi.org/10.1371/journal.pone.0022456

  30. Germain D (2011) Skp2 and Skp2B team up against Rb and p53. Cell Div. https://doi.org/10.1186/1747-1028-6-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bavelloni A, Piazzi M, Faenza I, Raffini M, D'Angelo A, Cattini L, Cocco L, Blalock WL (2014) Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia. Faseb J 28(5):2009–2019. https://doi.org/10.1096/fj.13-244368

    Article  PubMed  CAS  Google Scholar 

  32. Sun LG, Cao X, Liu B, Huang HL, Wang X, Sui LY, Yin WM, Ma KW (2011) CaMK IV phosphorylates prohibitin 2 and regulates prohibitin 2-mediated repression of MEF2 transcription. Cell Signal 23(10):1686–1690. https://doi.org/10.1016/j.cellsig.2011.06.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Moritz A, Li Y, Guo AL, Villen J, Wang Y, MacNeill J, Kornhauser J, Sprott K, Zhou J, Possemato A, Ren JM, Hornbeck P, Cantley LC, Gygi SP, Rush J, Comb MJ (2010) Akt-RSK-S6 Kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases. Science Signaling 3(136):11. https://doi.org/10.1126/scisignal.2000998

    Article  CAS  Google Scholar 

  34. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101. https://doi.org/10.1038/nbt1046

    Article  PubMed  CAS  Google Scholar 

  35. Yoshimaru T, Ono M, Bando Y, Chen YA, Mizuguchi K, Shima H, Komatsu M, Imoto I, Izumi K, Honda J, Miyoshi Y, Sasa M, Katagiri T (2017) A-kinase anchoring protein BIG3 coordinates oestrogen signalling in breast cancer cells. Nat Commun 8:12. https://doi.org/10.1038/ncomms15427

    Article  CAS  Google Scholar 

  36. Yurugi H, Tanida S, Akita K, Ishida A, Toda M, Nakada H (2013) Prohibitins function as endogenous ligands for Siglec-9 and negatively regulate TCR signaling upon ligation. Biochem Biophys Res Commun 434(2):376–381. https://doi.org/10.1016/j.bbrc.2013.03.085

    Article  PubMed  CAS  Google Scholar 

  37. Buehler U, Schulenburg K, Yurugi H, Šolman M, Abankwa D, Ulges A, Tenzer S, Bopp T, Thiede B, Zipp F, Rajalingam K (2018) Targeting prohibitins at the cell surface prevents Th17-mediated autoimmunity. The EMBO Journal. https://doi.org/10.15252/embj.201899429

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patel N, Chatterjee SK, Vrbanac V, Chung I, Mu CJ, Olsen RR, Waghorne C, Zetter BR (2010) Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA 107(6):2503–2508. https://doi.org/10.1073/pnas.0910649107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278(48):47853–47861. https://doi.org/10.1074/jbc.M305171200

    Article  PubMed  CAS  Google Scholar 

  40. Gamble SC, Chotai D, Odontiadis M, Dart DA, Brooke GN, Powell SM, Reebye V, Varela-Carver A, Kawano Y, Waxman J, Bevan CL (2007) Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 26(12):1757–1768. https://doi.org/10.1038/sj.onc.1209967

    Article  PubMed  CAS  Google Scholar 

  41. Joshi B, Rastogi S, Morris M, Carastro LM, Decook C, Seto E, Chellappan SP (2006) Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 binding sites. Biochem J 401(1):155–166. https://doi.org/10.1042/bj20060364

    Article  PubMed Central  Google Scholar 

  42. Lee SJ, Choi D, Rhim H, Choo HJ, Ko YG, Kim CG, Kang S (2008) PHB2 interacts with RNF2 and represses CP2c-stimulated transcription. Mol Cell Biochem 319(1–2):69–77. https://doi.org/10.1007/s11010-008-9878-2

    Article  PubMed  CAS  Google Scholar 

  43. Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS (1999) An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci USA 96(12):6947–6952. https://doi.org/10.1073/pnas.96.12.6947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Sun L, Liu L, Yang XJ, Wu Z (2004) Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J Cell Sci 117(Pt 14):3021–3029. https://doi.org/10.1242/jcs.01142

    Article  PubMed  CAS  Google Scholar 

  45. Wang S, Fusaro G, Padmanabhan J, Chellappan SP (2002) Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21(55):8388–8396. https://doi.org/10.1038/sj.onc.1205944

    Article  PubMed  CAS  Google Scholar 

  46. Wang S, Nath N, Adlam M, Chellappan S (1999) Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene 18(23):3501–3510. https://doi.org/10.1038/sj.onc.1202684

    Article  PubMed  CAS  Google Scholar 

  47. Wang S, Nath N, Fusaro G, Chellappan S (1999) Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol 19(11):7447–7460. https://doi.org/10.1128/mcb.19.11.7447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ramani K, Mavila N, Ko KS, Mato JM, Lu SC (2016) Prohibitin 1 regulates the H19-Igf2 axis and proliferation in hepatocytes. J Biol Chem 291(46):24148–24159. https://doi.org/10.1074/jbc.M116.744045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fan W, Yang H, Liu T, Wang J, Li TW, Mavila N, Tang Y, Yang J, Peng H, Tu J, Annamalai A, Noureddin M, Krishnan A, Gores GJ, Martinez-Chantar ML, Mato JM, Lu SC (2017) Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology 65(4):1249–1266. https://doi.org/10.1002/hep.28964

    Article  PubMed  CAS  Google Scholar 

  50. Yang H, Li TW, Zhou Y, Peng H, Liu T, Zandi E, Martinez-Chantar ML, Mato JM, Lu SC (2015) Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxid Redox Signal 22(3):259–274. https://doi.org/10.1089/ars.2014.6027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rizwani W, Alexandrow M, Chellappan S (2009) Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle 8(10):1621–1629. https://doi.org/10.4161/cc.8.10.8578

    Article  PubMed  CAS  Google Scholar 

  52. Han J, Yu C, Souza RF, Theiss AL (2014) Prohibitin 1 modulates mitochondrial function of Stat3. Cell Signal 26(10):2086–2095. https://doi.org/10.1016/j.cellsig.2014.06.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Perron A, Nishikawa Y, Iwata J, Shimojo H, Takaya J, Kobayashi K, Imayoshi I, Mbenza NM, Takenoya M, Kageyama R, Kodama Y, Uesugi M (2018) Small-molecule screening yields a compound that inhibits the cancer-associated transcription factor Hes1 via the PHB2 chaperone. J Biol Chem 293(21):8285–8294. https://doi.org/10.1074/jbc.RA118.002316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Qureshi R, Yildirim O, Gasser A, Basmadjian C, Zhao Q, Wilmet JP, Desaubry L, Nebigil CG (2015) FL3, a synthetic flavagline and ligand of prohibitins, protects cardiomyocytes via STAT3 from doxorubicin toxicity. PLoS ONE 10(11):e0141826. https://doi.org/10.1371/journal.pone.0141826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Guan X, Liu Z, Wang L, Johnson DG, Wei Q (2014) Identification of prohibitin and prohibiton as novel factors binding to the p53 induced gene 3 (PIG3) promoter (TGYCC)(15) motif. Biochem Biophys Res Commun 443(4):1239–1244. https://doi.org/10.1016/j.bbrc.2013.12.124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhang Y, Wang L-N, Lin Y-N, Xing Y-X, Shi Y, Zhao J, Chen W-W, Han B (2018) The novel long noncoding RNA LOC283070 is involved in the transition of LNCaP cells into androgen-independent cells via its interaction with PHB2. Asian J Androl 20(5):511–517. https://doi.org/10.4103/aja.aja_36_18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Signorile A, Sgaramella G, Bellomo F, De Rasmo D (2019) Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells 8(1):1. https://doi.org/10.3390/cells8010071

  58. King ML, Chiang CC, Ling HC, Fujita E, Ochiai M, McPhail AT (1992) X-Ray crystal structure of rocaglamide, a novel antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. Chem Commun 1150–1151

  59. Zhao Q, Abou-Hamdan H (2016) Désaubry L (2016) Recent advances in the synthesis of Flavaglines, a family of potent bioactive natural compounds originating from traditional Chinese medicine. Eur J Org Chem 36:5908–5916. https://doi.org/10.1002/ejoc.201600437

    Article  CAS  Google Scholar 

  60. Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM, Seo Y, Barna M, Ruggero D (2015) Differential requirements for eIF4E dose in normal development and cancer. Cell 162(1):59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang J, Li B, He QY (2018) Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis 9(6):580. https://doi.org/10.1038/s41419-018-0661-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Polier G, Neumann J, Thuaud F, Ribeiro N, Gelhaus C, Schmidt H, Giaisi M, Kohler R, Muller WW, Proksch P, Leippe M, Janssen O, Desaubry L, Krammer PH, Li-Weber M (2012) The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem Biol 19(9):1093–1104. https://doi.org/10.1016/j.chembiol.2012.07.012

    Article  PubMed  CAS  Google Scholar 

  63. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, Rapp UR, Rudel T (2005) Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nat Cell Biol 7(8):837–843. https://doi.org/10.1038/ncb1283

    Article  PubMed  CAS  Google Scholar 

  64. Luan Z, He Y, Alattar M, Chen ZS, He F (2014) Targeting the prohibitin scaffold-CRAF kinase interaction in RAS–ERK-driven pancreatic ductal adenocarcinoma. Mol Cancer 13:11. https://doi.org/10.1186/1476-4598-13-38

    Article  CAS  Google Scholar 

  65. Doudican NA, Orlow SJ (2017) Inhibition of the CRAF/prohibitin interaction reverses CRAF-dependent resistance to vemurafenib. Oncogene 36(3):423–428. https://doi.org/10.1038/onc.2016.214

    Article  PubMed  CAS  Google Scholar 

  66. Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, Desaubry L, Rajalingam K (2017) Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene 36(33):4778–4789. https://doi.org/10.1038/onc.2017.93

    Article  PubMed  CAS  Google Scholar 

  67. MacArthur IC, Bei Y, Garcia HD, Ortiz MV, Toedling J, Klironomos F, Ralff J, Eggert A, Schulte JH, Kentsis A, Henssen AG (2019) Prohibitin promotes dedifferentiation and is a potential therapeutic target in neuroblastoma. Jci Insight 4(10):16. https://doi.org/10.1172/jci.insight.127130

    Article  Google Scholar 

  68. Doudican NA, Orlow SJ (2016) Inhibition of the CRAF/prohibitin interaction reverses CRAF-dependent resistance to vemurafenib. Oncogene. https://doi.org/10.1038/onc.2016.214

    Article  PubMed  Google Scholar 

  69. Yuan G, Chen X, Liu Z, Wei W, Shu Q, Abou-Hamdan H, Jiang L, Li X, Chen R, Desaubry L, Zhou F, Xie D (2018) Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45alpha pathway. J Exp Clin Cancer Res 37(1):21. https://doi.org/10.1186/s13046-018-0695-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yang JW, Murray B, Barbier-Torres L, Liu T, Liu Z, Yang H, Fan W, Wang J, Li Y, Seki E, Mato JM, Lu SC (2019) The mitochondrial chaperone Prohibitin 1 negatively regulates interleukin-8 in human liver cancers. J Biol Chem 294(6):1984–1996. https://doi.org/10.1074/jbc.RA118.004863

    Article  PubMed  CAS  Google Scholar 

  71. Baumann B, Bohnenstengel F, Siegmund D, Wajant H, Weber C, Herr I, Debatin KM, Proksch P, Wirth T (2002) Rocaglamide derivatives are potent inhibitors of NF-kappa B activation in T-cells. J Biol Chem 277(47):44791–44800. https://doi.org/10.1074/jbc.M208003200

    Article  PubMed  CAS  Google Scholar 

  72. Li A, Yang L, Geng X, Peng X, Lu T, Deng Y, Dong Y (2015) Rocaglamide-A potentiates osteoblast differentiation by inhibiting NF-kappaB signaling. Mol Cells 38(11):941–949. https://doi.org/10.14348/molcells.2015.2353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Choi S, Bhagwat AM, Al Mismar R, Goswami N, Ben Hamidane H, Sun L, Graumann J (2018) Proteomic profiling of human cancer pseudopodia for the identification of anti-metastatic drug candidates. Sci Rep 8(1):5858. https://doi.org/10.1038/s41598-018-24256-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Arai MA, Kofuji Y, Tanaka Y, Yanase N, Yamaku K, Fuentes RG, Karmakar UK, Ishibashi M (2016) Synthesis of rocaglamide derivatives and evaluation of their Wnt signal inhibitory activities. Org Biomol Chem 14(11):3061–3068. https://doi.org/10.1039/c5ob02537k

    Article  PubMed  CAS  Google Scholar 

  75. Mavila N, Tang Y, Berlind J, Ramani K, Wang J, Mato JM, Lu SC (2018) Prohibitin 1 acts as a negative regulator of wingless/integrated-beta-catenin signaling in murine liver and human liver cancer cells. Hepatology Communications 2(12):1583–1600. https://doi.org/10.1002/hep4.1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. He L, Chen LX, Li LF (2017) The TBK1-OPTN axis mediates crosstalk between mitophagy and the innate immune response: a potential therapeutic target for neurodegenerative diseases. Neurosci Bull 33(3):354–356. https://doi.org/10.1007/s12264-017-0116-3

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu S, Wang W, Brown LE, Qiu C, Lajkiewicz N, Zhao T, Zhou J, Porco JA Jr, Wang TT (2015) A novel class of small molecule compounds that inhibit hepatitis C virus infection by targeting the prohibitin-CRaf pathway. EBioMedicine 2(11):1600–1606

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang W, Liu S, Maiga RI, Pelletier J, Brown LE, Wang TT, Porco JA (2018) Chemical synthesis enables structural reengineering of aglaroxin C leading to inhibition bias for HCV infection. J Am Chem Soc. https://doi.org/10.1021/jacs.8b11477

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wintachai P, Thuaud F, Basmadjian C, Roytrakul S, Ubol S, Desaubry L, Smith DR (2015) Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol Immunol 59(3):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Too IHK, Bonne I, Tan EL, Chu JJH, Alonso S (2018) Prohibitin plays a critical role in enterovirus 71 neuropathogenesis. PLoS Pathog 14(1):e1006778. https://doi.org/10.1371/journal.ppat.1006778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nebigil CG, Desaubry L (2018) Updates in anthracycline-mediated cardiotoxicity. Front Pharmacol 9:1262. https://doi.org/10.3389/fphar.2018.01262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bernard Y, Ribeiro N, Thuaud F, Turkeri G, Dirr R, Boulberdaa M, Nebigil CG, Desaubry L (2011) Flavaglines alleviate doxorubicin cardiotoxicity: implication of Hsp27. PLoS ONE 6(10):e25302. https://doi.org/10.1371/journal.pone.0025302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Emhemmed F, Azouaou SA, Hassan S, Lefevbre R, Desaubry L, Muller CD, Fuhrmann G (2019) The synthetic flavagline FL3 spares normal human skin cells from its cytotoxic effect via an activation of Bad. Toxicol In Vitro. https://doi.org/10.1016/j.tiv.2019.04.025

    Article  PubMed  Google Scholar 

  84. Ribeiro N, Thuaud F, Bernard Y, Gaiddon C, Cresteil T, Hild A, Hirsch EC, Michel PP, Nebigil CG, Desaubry L (2012) Flavaglines as potent anticancer and cytoprotective agents. J Med Chem 55(22):10064–10073. https://doi.org/10.1021/jm301201z

    Article  PubMed  CAS  Google Scholar 

  85. Fahrig T, Gerlach I, Horvath E (2005) A synthetic derivative of the natural product rocaglaol is a potent inhibitor of cytokine-mediated signaling and shows neuroprotective activity in vitro and in animal models of Parkinson's disease and traumatic brain injury. Mol Pharmacol 67(5):1544–1555. https://doi.org/10.1124/mol.104.008177

    Article  PubMed  CAS  Google Scholar 

  86. Becker MS, Breuer R, Krammer PH, Li-Weber M, Schmezer P, Haas SF, Essers MA (2014) The traditional Chinese medical compound Rocaglamide protects nonmalignant primary cells from DNA damage-induced toxicity by inhibition of p53 expression. Cell Death Dis 5:e1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Han J, Zhao Q, Basmadjian C, Desaubry L, Theiss AL (2016) Flavaglines ameliorate experimental colitis and protect against intestinal epithelial cell apoptosis and mitochondrial dysfunction. Inflamm Bowel Dis 22(1):55–67. https://doi.org/10.1097/MIB.0000000000000592

    Article  PubMed  Google Scholar 

  88. Kathiria AS, Neumann WL, Rhees J, Hotchkiss E, Cheng Y, Genta RM, Meltzer SJ, Souza RF, Theiss AL (2012) Prohibitin attenuates colitis-associated tumorigenesis in mice by modulating p53 and STAT3 apoptotic responses. Cancer Res 72(22):5778–5789. https://doi.org/10.1158/0008-5472.CAN-12-0603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Perez-Perarnau A, Preciado S, Palmeri CM, Moncunill-Massaguer C, Iglesias-Serret D, Gonzalez-Girones DM, Miguel M, Karasawa S, Sakamoto S, Cosialls AM, Rubio-Patino C, Saura-Esteller J, Ramon R, Caja L, Fabregat I, Pons G, Handa H, Albericio F, Gil J, Lavilla R (2014) A trifluorinated thiazoline scaffold leading to pro-apoptotic agents targeting prohibitins. Angew Chem Int Ed Engl 53(38):10150–10154. https://doi.org/10.1002/anie.201405758

    Article  PubMed  CAS  Google Scholar 

  90. Cosialls AM, Pomares H, Iglesias-Serret D, Saura-Esteller J, Nunez-Vazquez S, Gonzalez-Girones DM, de la Banda E, Preciado S, Albericio F, Lavilla R, Pons G, Gonzalez-Barca EM, Gil J (2017) The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax. Haematologica 102(9):1587–1593. https://doi.org/10.3324/haematol.2016.162958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Moncunill-Massaguer C, Saura-Esteller J, Perez-Perarnau A, Palmeri CM, Nunez-Vazquez S, Cosialls AM, Gonzalez-Girones DM, Pomares H, Korwitz A, Preciado S, Albericio F, Lavilla R, Pons G, Langer T, Iglesias-Serret D, Gil J (2015) A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget 6(39):41750–41765. https://doi.org/10.18632/oncotarget.6154

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pomares H, Palmeri CM, Iglesias-Serret D, Moncunill-Massaguer C, Saura-Esteller J, Nunez-Vazquez S, Gamundi E, Arnan M, Preciado S, Albericio F, Lavilla R, Pons G, Gonzalez-Barca EM, Cosialls AM, Gil J (2016) Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget 7(40):64987–65000. https://doi.org/10.18632/oncotarget.11333

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wierz M, Pierson S, Chouha N, Desaubry L, Francois JH, Berchem G, Paggetti J, Moussay E (2018) The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells ex vivo but fails to prevent leukemia development in a murine model. Haematologica. https://doi.org/10.3324/haematol.2017.175349

    Article  PubMed  PubMed Central  Google Scholar 

  94. Snyder JR, Hall A, Ni-Komatsu L, Khersonsky SM, Chang YT, Orlow SJ (2005) Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol 12(4):477–484. https://doi.org/10.1016/j.chembiol.2005.02.014

    Article  PubMed  CAS  Google Scholar 

  95. Djehal A, Krayem M, Najem A, Hammoud H, Cresteil T, Nebigil CG, Wang D, Yu P, Bentouhami E, Ghanem GE, Desaubry L (2018) Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells. Eur J Med Chem 155:880–888. https://doi.org/10.1016/j.ejmech.2018.06.052

    Article  PubMed  CAS  Google Scholar 

  96. Yun WJ, Kim EY, Park JE, Jo SY, Bang SH, Chang EJ, Chang SE (2016) Microtubule-associated protein light chain 3 is involved in melanogenesis via regulation of MITF expression in melanocytes. Sci Rep 6:19914. https://doi.org/10.1038/srep19914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wei Y, Chiang W-C, Sumpter R Jr, Mishra P, Levine B (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168(1–2):224–238.e210

    Article  CAS  PubMed  Google Scholar 

  98. Sato S, Murata A, Orihara T, Shirakawa T, Suenaga K, Kigoshi H, Uesugi M (2011) Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem Biol 18(1):131–139. https://doi.org/10.1016/j.chembiol.2010.10.017

    Article  PubMed  CAS  Google Scholar 

  99. Langdahl BL, Andersen JD (2018) Treatment of osteoporosis: unmet needs and emerging solutions. J Bone Metab 25(3):133–140. https://doi.org/10.11005/jbm.2018.25.3.133

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee MY, Kim MH, Kim J, Kim SH, Kim BT, Jeong IH, Chang S, Kim SH, Chang SY (2010) Synthesis and SAR of sulfonyl- and phosphoryl amidine compounds as anti-resorptive agents. Bioorg Med Chem Lett 20(2):541–545. https://doi.org/10.1016/j.bmcl.2009.11.104

    Article  PubMed  CAS  Google Scholar 

  101. Chang S-Y, Bae SJ, Lee MY, Baek S-H, Chang S, Kim SH (2010) Chemical affinity matrix-based identification of prohibitin as a binding protein to anti-resorptive sulfonyl amidine compounds. Bioorg Med Chem Lett 21(2):727–729. https://doi.org/10.1016/j.bmcl.2010.11.123

  102. Lee CH, Choi SW, Kim JY, Kim SH, Yoon KH, Oh J, Lee MS (2015) Overexpression of prohibitin-1 inhibits RANKL-induced activation of p38-Elk-1-SRE signaling axis blocking MKK6 activity. Biochem Biophys Res Commun 463(4):1028–1033. https://doi.org/10.1016/j.bbrc.2015.06.053

    Article  PubMed  CAS  Google Scholar 

  103. Kim MH, Park M, Song JS, Park SJ, Kim SH (2011) Anti-resorptive activity and pharmacokinetic study of N(1), N(1)-diisopropyl-N(2)-(diphenylphosphoryl)-2-(4-nitrophenyl)acetamidine. Bioorg Med Chem Lett 21(14):4263–4266. https://doi.org/10.1016/j.bmcl.2011.05.058

    Article  PubMed  CAS  Google Scholar 

  104. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10(6):625–632. https://doi.org/10.1038/nm1048

    Article  PubMed  CAS  Google Scholar 

  105. Barnhart KF, Christianson DR, Hanley PW, Driessen WH, Bernacky BJ, Baze WB, Wen S, Tian M, Ma J, Kolonin MG, Saha PK, Do KA, Hulvat JF, Gelovani JG, Chan L, Arap W, Pasqualini R (2011) A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci Transl Med 3(108):108ra112. https://doi.org/10.1126/scitranslmed.3002621

  106. Sharma A, Qadri A (2004) Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA 101(50):17492–17497. https://doi.org/10.1073/pnas.0407536101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Parween F, Yadav J, Qadri A (2019) The virulence polysaccharide of salmonella typhi suppresses activation of rho family GTPases to limit inflammatory responses from epithelial cells. Front Cell Infect Microbiol 9:10. https://doi.org/10.3389/fcimb.2019.00141

    Article  CAS  Google Scholar 

  108. Santhanam SK, Dutta D, Parween F, Qadri A (2014) The virulence polysaccharide Vi released by salmonella typhi targets membrane prohibitin to inhibit T-cell activation. J Infect Dis 210(1):79–88. https://doi.org/10.1093/infdis/jiu064

    Article  PubMed  CAS  Google Scholar 

  109. Garg R, Qadri A (2010) Hemoglobin transforms anti-inflammatory salmonella typhi virulence polysaccharide into a TLR-2 agonist. J Immunol 184(11):5980–5987. https://doi.org/10.4049/jimmunol.0903512

    Article  PubMed  CAS  Google Scholar 

  110. Parween F, Yadav J, Qadri A (2019) The virulence polysaccharide of salmonella typhi suppresses activation of rho family GTPases to limit inflammatory responses from epithelial cells. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2019.00141

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jang KS, Baik JE, Kang SS, Jeon JH, Choi S, Yang YH, Kim BG, Yun CH, Han SH (2012) Identification of staphylococcal lipoteichoic acid-binding proteins in human serum by high-resolution LTQ-Orbitrap mass spectrometry. Mol Immunol 50(3):177–183. https://doi.org/10.1016/j.molimm.2011.11.012

    Article  PubMed  CAS  Google Scholar 

  112. You L, Kruse FE, Bacher S, Schmitz ML (2002) Lipoteichoic acid selectively induces the ERK signaling pathway in the cornea. Invest Ophthalmol Vis Sci 43(7):2272–2277

    PubMed  Google Scholar 

  113. Kuramori C, Azuma M, Kume K, Kaneko Y, Inoue A, Yamaguchi Y, Kabe Y, Hosoya T, Kizaki M, Suematsu M, Handa H (2009) Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus. Biochem Biophys Res Commun 379(2):519–525. https://doi.org/10.1016/j.bbrc.2008.12.103

    Article  PubMed  CAS  Google Scholar 

  114. Yoshimaru T, Komatsu M, Tashiro E, Imoto M, Osada H, Miyoshi Y, Honda J, Sasa M, Katagiri T (2014) Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci Rep 4:7355. https://doi.org/10.1038/srep07355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Hati S, Tripathy S, Dutta PK, Agarwal R, Srinivasan R, Singh A, Singh S, Sen S (2016) Spiro[pyrrolidine-3, 3 -oxindole] as potent anti-breast cancer compounds: their design, synthesis, biological evaluation and cellular target identification. Sci Rep 6:32213. https://doi.org/10.1038/srep32213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Elderwish S, Audebrand A, Nebigil CG, Désaubry L (2020) Discovery of 3,3’-pyrrolidinyl-spirooxindoles as cardioprotectant prohibitin ligands. Eur J Med Chem 186:111859. https://doi.org/10.1016/j.ejmech.2019.111859

    Article  PubMed  CAS  Google Scholar 

  117. Bettayeb K, Oumata N, Zhang Y, Luo W, Bustos V, Galons H, Greengard P, Meijer L, Flajolet M (2012) Small-molecule inducers of Abeta-42 peptide production share a common mechanism of action. FASEB J 26(12):5115–5123. https://doi.org/10.1096/fj.12-212985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Hochard A, Oumata N, Bettayeb K, Gloulou O, Fant X, Durieu E, Buron N, Porceddu M, Borgne-Sanchez A, Galons H, Flajolet M, Meijer L (2013) Aftins Increase amyloid-beta(42), lower amyloid-beta(38), and do not alter amyloid-beta(40) extracellular production in vitro: toward a chemical model of Alzheimer's disease? J Alzheimers Dis 35(1):107–120. https://doi.org/10.3233/jad-121777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Guyot A-C, Leuxe C, Disdier C, Oumata N, Costa N, Roux GL, Fernandez-Varela P, Duchon A, Charbonnier JB, Herault Y, Pavoni S, Galons H, Andriambeloson E, Wagner S, Meijer L, Lund AK, Mabondzo A (2020) A small compound targeting prohibitin with potential interest for cognitive deficit rescue in aging mice and tau pathology treatment. Sci Rep 10(1):1143. https://doi.org/10.1038/s41598-020-57560-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Xun Y, Chen P, Yan H, Yang W, Shi L, Chen G, Du H (2014) Identification of prohibitin as an antigen in Behcet's disease. Biochem Biophys Res Commun 451(3):389–393. https://doi.org/10.1016/j.bbrc.2014.07.126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 81673296) and the start-up Foundation from Tianjin University of Science and Technology is gratefully acknowledged. KR acknowledges support from DFG and CRC1292.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this review.

Corresponding author

Correspondence to Laurent Désaubry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Tabti, R., Elderwish, S. et al. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell. Mol. Life Sci. 77, 3525–3546 (2020). https://doi.org/10.1007/s00018-020-03475-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03475-1

Keywords

Navigation