Skip to main content
Log in

Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Proteolysis is a crucial process in life, tightly controlled by numerous natural protease inhibitors. In human blood, alpha-2-macroglobulin is an emergency protease inhibitor preventing coagulation and damage to endothelia and leukocytes. With the use of a unique protease trapping mechanism, alpha-2-macroglobulin lures active proteases into its snap-trap, shields these from potential substrates and ‘flags’ their complex for elimination by receptor-mediated endocytosis. Matrix metalloprotease-9/gelatinase B is a secreted protease increased in blood of patients with inflammations, vascular disorders and cancers. Matrix metalloprotease-9 occurs as monomers and stable homotrimers, but the reason for their co-existence remains obscure. We discovered that matrix metalloprotease-9 homotrimers undergo reduced anti-proteolytic regulation by alpha-2-macroglobulin and are able to travel as a proteolytically active hitchhiker on alpha-2-macroglobulin. As a comparison, we revealed that monomeric active matrix metalloprotease-9 is efficiently trapped by human plasma alpha-2-macroglobulin and this masks the detection of activated matrix metalloprotease-9 with standard analysis techniques. In addition, we show that alpha-2-macroglobulin/trimer complexes escape clearance through the receptor low-density lipoprotein receptor-related protein 1, also known as the alpha-2-macroglobulin receptor. Thus, the biochemistry and biology of matrix metalloprotease-9 monomers and trimers are completely different as multimerization enables active matrix metalloprotease-9 to partially avoid alpha-2-macroglobulin regulation both by direct protease inhibition and by removal from the extracellular space by receptor-mediated endocytosis. Finally, for the biomarker field, the analysis of alpha-2-macroglobulin/protease complexes with upgraded technology is advocated as a quotum for protease activation in human plasma samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α2M:

Alpha-2-macroglobulin

cdMMP-3:

Catalytic domain of MMP-3

LRP-1:

Low density lipoprotein receptor-related protein-1

MMPs:

Matrix metalloproteases

TIMPs:

Tissue inhibitors of metalloproteases

References

  1. Seife C (1997) Blunting nature’s Swiss army knife. Science 277(5332):1602–1603

    Article  CAS  Google Scholar 

  2. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5(9):785–799. https://doi.org/10.1038/nrd2092

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong PB, Quigley JP (1999) Alpha2-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 23(4–5):375–390

    Article  CAS  Google Scholar 

  4. Barrett AJ, Starkey PM (1973) The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 133(4):709–724

    Article  CAS  Google Scholar 

  5. Rehman AA, Ahsan H, Khan FH (2013) alpha-2-Macroglobulin: a physiological guardian. J Cell Physiol 228(8):1665–1675. https://doi.org/10.1002/jcp.24266

    Article  CAS  PubMed  Google Scholar 

  6. Marrero A, Duquerroy S, Trapani S, Goulas T, Guevara T, Andersen GR, Navaza J, Sottrup-Jensen L, Gomis-Ruth FX (2012) The crystal structure of human alpha2-macroglobulin reveals a unique molecular cage. Angew Chem Int Ed Engl 51(14):3340–3344. https://doi.org/10.1002/anie.201108015

    Article  CAS  PubMed  Google Scholar 

  7. Salvesen GS, Sayers CA, Barrett AJ (1981) Further characterization of the covalent linking reaction of alpha 2-macroglobulin. Biochem J 195(2):453–461

    Article  CAS  Google Scholar 

  8. Nagasawa S, Han BH, Sugihara H, Suzuki T (1970) Studies on alpha 2-macroglobulin in bovine plasma. II. Interaction of alpha2-macroglobulin and trypsin. J Biochem 67(6):821–832

    Article  CAS  Google Scholar 

  9. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108(6):779–784. https://doi.org/10.1172/JCI13992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV (2002) The role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction. J Biol Chem 277(44):42082–42087. https://doi.org/10.1074/jbc.m206174200

    Article  CAS  PubMed  Google Scholar 

  11. Misra UK, Pizzo SV (2004) Potentiation of signal transduction mitogenesis and cellular proliferation upon binding of receptor-recognized forms of alpha2-macroglobulin to 1-LN prostate cancer cells. Cell Signal 16(4):487–496

    Article  CAS  Google Scholar 

  12. Hoffman M, Pizzo SV, Weinberg JB (1988) Alpha 2 macroglobulin-proteinase complexes stimulate prostaglandin E2 synthesis by peritoneal macrophages. Agents Actions 25(3–4):360–367

    Article  CAS  Google Scholar 

  13. Bonacci GR, Caceres LC, Sanchez MC, Chiabrando GA (2007) Activated alpha(2)-macroglobulin induces cell proliferation and mitogen-activated protein kinase activation by LRP-1 in the J774 macrophage-derived cell line. Arch Biochem Biophys 460(1):100–106. https://doi.org/10.1016/j.abb.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  14. Anderson RB, Cianciolo GJ, Kennedy MN, Pizzo SV (2008) Alpha 2-macroglobulin binds CpG oligodeoxynucleotides and enhances their immunostimulatory properties by a receptor-dependent mechanism. J Leukoc Biol 83(2):381–392. https://doi.org/10.1189/jlb.0407236

    Article  CAS  PubMed  Google Scholar 

  15. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, Perry R, Watson B Jr, Bassett SS, McInnis MG, Albert MS, Hyman BT, Tanzi RE (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19(4):357–360. https://doi.org/10.1038/1243

    Article  CAS  PubMed  Google Scholar 

  16. Varma VR, Varma S, An Y, Hohman TJ, Seddighi S, Casanova R, Beri A, Dammer EB, Seyfried NT, Pletnikova O, Moghekar A, Wilson MR, Lah JJ, O’Brien RJ, Levey AI, Troncoso JC, Albert MS, Thambisetty M (2017) Alpha-2 macroglobulin in Alzheimer’s disease: a marker of neuronal injury through the RCAN1 pathway. Mol Psychiatry 22(1):13–23. https://doi.org/10.1038/mp.2016.206

    Article  CAS  PubMed  Google Scholar 

  17. Werb Z, Burleigh MC, Barrett AJ, Starkey PM (1974) The interaction of alpha2-macroglobulin with proteinases. Binding and inhibition of mammalian collagenases and other metal proteinases. Biochem J 139(2):359–368

    Article  CAS  Google Scholar 

  18. Caceres LC, Bonacci GR, Sanchez MC, Chiabrando GA (2010) Activated alpha(2) macroglobulin induces matrix metalloproteinase 9 expression by low-density lipoprotein receptor-related protein 1 through MAPK-ERK1/2 and NF-kappaB activation in macrophage-derived cell lines. J Cell Biochem 111(3):607–617. https://doi.org/10.1002/jcb.22737

    Article  CAS  PubMed  Google Scholar 

  19. Tchetverikov I, Verzijl N, Huizinga TW, TeKoppele JM, Hanemaaijer R, DeGroot J (2003) Active MMPs captured by alpha 2 macroglobulin as a marker of disease activity in rheumatoid arthritis. Clin Exp Rheumatol 21(6):711–718

    CAS  PubMed  Google Scholar 

  20. Arbelaez LF, Bergmann U, Tuuttila A, Shanbhag VP, Stigbrand T (1997) Interaction of matrix metalloproteinases-2 and -9 with pregnancy zone protein and alpha2-macroglobulin. Arch Biochem Biophys 347(1):62–68. https://doi.org/10.1006/abbi.1997.0309

    Article  CAS  PubMed  Google Scholar 

  21. Dufour A, Overall CM (2013) Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci 34(4):233–242. https://doi.org/10.1016/j.tips.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  22. Brkic M, Balusu S, Libert C, Vandenbroucke RE (2015) Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm 2015:620581. https://doi.org/10.1155/2015/620581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson HW, Defamie V, Waterhouse P, Khokha R (2017) TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer 17(1):38–53. https://doi.org/10.1038/nrc.2016.115

    Article  CAS  PubMed  Google Scholar 

  24. Vandooren J, Van den Steen PE, Opdenakker G (2013) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol 48(3):222–272. https://doi.org/10.3109/10409238.2013.770819

    Article  CAS  PubMed  Google Scholar 

  25. Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G (2013) Zymography methods for visualizing hydrolytic enzymes. Nat Methods 10(3):211–220. https://doi.org/10.1038/nmeth.2371

    Article  CAS  PubMed  Google Scholar 

  26. Hannocks MJ, Zhang X, Gerwien H, Chashchina A, Burmeister M, Korpos E, Song J, Sorokin L (2017) The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. https://doi.org/10.1016/j.matbio.2017.11.007

    Article  PubMed  Google Scholar 

  27. Vandooren J, Swinnen W, Ugarte-Berzal E, Boon L, Dorst D, Martens E, Opdenakker G (2017) Endotoxemia shifts neutrophils with TIMP-free gelatinase B/MMP-9 from bone marrow to the periphery and induces systematic upregulation of TIMP-1. Haematologica 102(10):1671–1682. https://doi.org/10.3324/haematol.2017.168799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S, Proost P, Van Damme J (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 69(6):851–859

    CAS  PubMed  Google Scholar 

  29. Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S, Royle L, Wormald MR, Wallis R, Rudd PM, Dwek RA, Opdenakker G (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281(27):18626–18637. https://doi.org/10.1074/jbc.M512308200

    Article  CAS  PubMed  Google Scholar 

  30. Rosenblum G, Van den Steen PE, Cohen SR, Grossmann JG, Frenkel J, Sertchook R, Slack N, Strange RW, Opdenakker G, Sagi I (2007) Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase B. Structure 15(10):1227–1236. https://doi.org/10.1016/j.str.2007.07.019

    Article  CAS  PubMed  Google Scholar 

  31. Overall CM, Butler GS (2007) Protease yoga: extreme flexibility of a matrix metalloproteinase. Structure 15(10):1159–1161. https://doi.org/10.1016/j.str.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  32. Hu J, Yan M, Pu C, Wang J, Van den Steen PE, Opdenakker G, Xu H (2014) Chemically synthesized matrix metalloproteinase and angiogenesis-inhibiting peptides as anticancer agents. Anticancer Agents Med Chem 14(3):483–494

    Article  CAS  Google Scholar 

  33. Van Leuven F, Cassiman JJ, Van den Berghe H (1981) Functional modifications of alpha 2-macroglobulin by primary amines. I. Characterization of alpha 2M after derivatization by methylamine and by factor XIII. J Biol Chem 256(17):9016–9022

    PubMed  Google Scholar 

  34. Coan MH, Roberts RC (1989) A redetermination of the concentration of alpha 2-macroglobulin in human plasma. Biol Chem Hoppe Seyler 370(7):673–676

    Article  CAS  Google Scholar 

  35. de Sain-van der Velden MG, Rabelink TJ, Reijngoud DJ, Gadellaa MM, Voorbij HA, Stellaard F, Kaysen GA (1998) Plasma alpha 2 macroglobulin is increased in nephrotic patients as a result of increased synthesis alone. Kidney Int 54(2):530–535. https://doi.org/10.1046/j.1523-1755.1998.00018.x

    Article  CAS  PubMed  Google Scholar 

  36. Vandooren J, Born B, Solomonov I, Zajac E, Saldova R, Senske M, Ugarte-Berzal E, Martens E, Van den Steen PE, Van Damme J, Garcia-Pardo A, Froeyen M, Deryugina EI, Quigley JP, Moestrup SK, Rudd PM, Sagi I, Opdenakker G (2015) Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1. Biochem J 465(2):259–270. https://doi.org/10.1042/BJ20140418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feldman SR, Rosenberg MR, Ney KA, Michalopoulos G, Pizzo SV (1985) Binding of alpha 2-macroglobulin to hepatocytes: mechanism of in vivo clearance. Biochem Biophys Res Commun 128(2):795–802

    Article  CAS  Google Scholar 

  38. Mortensen SB, Sottrup-Jensen L, Hansen HF, Petersen TE, Magnusson S (1981) Primary and secondary cleavage sites in the bait region of alpha 2-macroglobulin. FEBS Lett 135(2):295–300

    Article  CAS  Google Scholar 

  39. Gonias SL, Pizzo SV (1983) Reaction of human alpha 2-macroglobulin half-molecules with plasmin as a probe of protease binding site structure. Biochemistry 22(21):4933–4940

    Article  CAS  Google Scholar 

  40. Dubois B, Starckx S, Pagenstecher A, Oord J, Arnold B, Opdenakker G (2002) Gelatinase B deficiency protects against endotoxin shock. Eur J Immunol 32(8):2163–2171. https://doi.org/10.1002/1521-4141(200208)32:8%3c2163:AID-IMMU2163%3e3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  41. Vandooren J, Van Damme J, Opdenakker G (2014) On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation. Prog Brain Res 214:193–206. https://doi.org/10.1016/B978-0-444-63486-3.00009-8

    Article  PubMed  Google Scholar 

  42. Gao M, Nguyen TT, Suckow MA, Wolter WR, Gooyit M, Mobashery S, Chang M (2015) Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci USA 112(49):15226–15231. https://doi.org/10.1073/pnas.1517847112

    Article  CAS  PubMed  Google Scholar 

  43. Opdenakker G, Van Damme J, Vranckx JJ (2018) Immunomodulation as rescue for chronic atonic skin wounds. Trends Immunol 39(4):341–354. https://doi.org/10.1016/j.it.2018.01.010

    Article  CAS  PubMed  Google Scholar 

  44. Nagase H, Itoh Y, Binner S (1994) Interaction of alpha 2-macroglobulin with matrix metalloproteinases and its use for identification of their active forms. Ann N Y Acad Sci 732:294–302

    Article  CAS  Google Scholar 

  45. Wang M, Zhang Q, Zhao X, Dong G, Li C (2014) Diagnostic and prognostic value of neutrophil gelatinase-associated lipocalin, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinases-1 for sepsis in the Emergency Department: an observational study. Crit Care 18(6):634. https://doi.org/10.1186/s13054-014-0634-6

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Wei C, Deng L, Wang Z, Song M, Xiong Y, Liu M (2018) The accuracy of serum matrix metalloproteinase-9 for predicting hemorrhagic transformation after acute ischemic stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 27(6):1653–1665. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.01.023

    Article  PubMed  Google Scholar 

  47. Marchesi C, Dentali F, Nicolini E, Maresca AM, Tayebjee MH, Franz M, Guasti L, Venco A, Schiffrin EL, Lip GY, Grandi AM (2012) Plasma levels of matrix metalloproteinases and their inhibitors in hypertension: a systematic review and meta-analysis. J Hypertens 30(1):3–16. https://doi.org/10.1097/HJH.0b013e32834d249a

    Article  CAS  PubMed  Google Scholar 

  48. Zhong C, Yang J, Xu T, Xu T, Peng Y, Wang A, Wang J, Peng H, Li Q, Ju Z, Geng D, Zhang Y, He J, Investigators C (2017) Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology 89(8):805–812. https://doi.org/10.1212/WNL.0000000000004257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prince HE (2005) Biomarkers for diagnosing and monitoring autoimmune diseases. Biomarkers 10(Suppl 1):S44–S49. https://doi.org/10.1080/13547500500214194

    Article  CAS  PubMed  Google Scholar 

  50. Gimeno-Garcia AZ, Trinanes J, Quintero E, Salido E, Nicolas-Perez D, Adrian-de-Ganzo Z, Alarcon-Fernandez O, Abrante B, Romero R, Carrillo M, Ramos L, Alonso I, Ortega J, Jimenez A (2016) Plasma matrix metalloproteinase 9 as an early surrogate biomarker of advanced colorectal neoplasia. Gastroenterol Hepatol 39(7):433–441. https://doi.org/10.1016/j.gastrohep.2015.10.002

    Article  PubMed  Google Scholar 

  51. Vandooren J, Geurts N, Martens E, Van den Steen PE, Jonghe SD, Herdewijn P, Opdenakker G (2011) Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain. World J Biol Chem 2(1):14–24. https://doi.org/10.4331/wjbc.v2.i1.14

    Article  PubMed  PubMed Central  Google Scholar 

  52. Paemen L, Martens E, Masure S, Opdenakker G (1995) Monoclonal antibodies specific for natural human neutrophil gelatinase B used for affinity purification, quantitation by two-site ELISA and inhibition of enzymatic activity. Eur J Biochem 234(3):759–765

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Erik Martens, Karen Turneer, Jens Van Bael and Michael Van Canneyt for their assistance with the zymography analysis and the separation of MMP-9 monomers and trimers. EUB and JV are postdoctoral fellows funded by the Rega Foundation and the Research Foundation of Flanders (FWO-Vlaanderen). Project funding was from KU Leuven through a C1 grant (C16/17/010), the Belgian Charcot Foundation and FWO-Vlaanderen (Grants G0A7516N and G0A5716N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Vandooren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serifova, X., Ugarte-Berzal, E., Opdenakker, G. et al. Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell. Mol. Life Sci. 77, 3013–3026 (2020). https://doi.org/10.1007/s00018-019-03338-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03338-4

Keywords

Navigation