Skip to main content
Log in

Recent advances in the genetic basis of taste detection in Drosophila

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H2O2, bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shanbhag SR, Park SK, Pikielny CW, Steinbrecht RA (2001) Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304(3):423–437

    Article  CAS  PubMed  Google Scholar 

  2. Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K (2012) Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149(5):1140–1151. https://doi.org/10.1016/j.cell.2012.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bray S, Amrein H (2003) A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39(6):1019–1029

    Article  CAS  PubMed  Google Scholar 

  4. Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275(1):3–26

    Article  CAS  PubMed  Google Scholar 

  5. Stocker RF, Schorderet M (1981) Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tissue Res 216(3):513–523

    Article  CAS  PubMed  Google Scholar 

  6. Salvaterra PM, Kitamoto T (2001) Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Brain Res Gene Expr Patterns 1(1):73–82

    Article  CAS  PubMed  Google Scholar 

  7. Jaeger AH, Stanley M, Weiss ZF, Musso PY, Chan RC, Zhang H, Feldman-Kiss D, Gordon MD (2018) A complex peripheral code for salt taste in Drosophila. eLife 7:e37167. https://doi.org/10.7554/elife.37167

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kallman BR, Kim H, Scott K (2015) Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. eLife 4:e11188. https://doi.org/10.7554/elife.11188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hiroi M, Meunier N, Marion-Poll F, Tanimura T (2004) Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. J Neurobiol 61(3):333–342. https://doi.org/10.1002/neu.20063

    Article  PubMed  Google Scholar 

  10. Ling F, Dahanukar A, Weiss LA, Kwon JY, Carlson JR (2014) The molecular and cellular basis of taste coding in the legs of Drosophila. J Neurosci 34(21):7148–7164. https://doi.org/10.1523/JNEUROSCI.0649-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Charlu S, Wisotsky Z, Medina A, Dahanukar A (2013) Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat Commun 4:2042. https://doi.org/10.1038/ncomms3042

    Article  CAS  PubMed  Google Scholar 

  12. Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69(2):258–272. https://doi.org/10.1016/j.neuron.2011.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dahanukar A, Lei YT, Kwon JY, Carlson JR (2007) Two Gr genes underlie sugar reception in Drosophila. Neuron 56(3):503–516. https://doi.org/10.1016/j.neuron.2007.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clyne PJ, Warr CG, Carlson JR (2000) Candidate taste receptors in Drosophila. Science 287(5459):1830–1834

    Article  CAS  PubMed  Google Scholar 

  15. Scott K, Brady R Jr, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104(5):661–673

    Article  CAS  PubMed  Google Scholar 

  16. Dunipace L, Meister S, McNealy C, Amrein H (2001) Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol 11(11):822–835

    Article  CAS  PubMed  Google Scholar 

  17. Fujii S, Yavuz A, Slone J, Jagge C, Song X, Amrein H (2015) Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr Biol CB 25(5):621–627. https://doi.org/10.1016/j.cub.2014.12.058

    Article  CAS  PubMed  Google Scholar 

  18. Chen YD, Dahanukar A (2017) Molecular and cellular organization of taste neurons in adult Drosophila pharynx. Cell Rep 21(10):2978–2991. https://doi.org/10.1016/j.celrep.2017.11.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LeDue EE, Chen YC, Jung AY, Dahanukar A, Gordon MD (2015) Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat Commun 6:6667. https://doi.org/10.1038/ncomms7667

    Article  CAS  PubMed  Google Scholar 

  20. Moon SJ, Lee Y, Jiao Y, Montell C (2009) A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol 19(19):1623–1627. https://doi.org/10.1016/j.cub.2009.07.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanchez-Alcaniz JA, Silbering AF, Croset V, Zappia G, Sivasubramaniam AK, Abuin L, Sahai SY, Munch D, Steck K, Auer TO, Cruchet S, Neagu-Maier GL, Sprecher SG, Ribeiro C, Yapici N, Benton R (2018) An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat Commun 9(1):4252. https://doi.org/10.1038/s41467-018-06453-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6(8):e1001064. https://doi.org/10.1371/journal.pgen.1001064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang YV, Ni J, Montell C (2013) The molecular basis for attractive salt-taste coding in Drosophila. Science 340(6138):1334–1338. https://doi.org/10.1126/science.1234133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steck K, Walker SJ, Itskov PM, Baltazar C, Moreira JM, Ribeiro C (2018) Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. eLife 7:e31625. https://doi.org/10.7554/elife.31625

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ganguly A, Pang L, Duong VK, Lee A, Schoniger H, Varady E, Dahanukar A (2017) A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep 18(3):737–750. https://doi.org/10.1016/j.celrep.2016.12.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Croset V, Schleyer M, Arguello JR, Gerber B, Benton R (2016) A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci Rep 6:34871. https://doi.org/10.1038/srep34871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koh TW, He Z, Gorur-Shandilya S, Menuz K, Larter NK, Stewart S, Carlson JR (2014) The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron 83(4):850–865. https://doi.org/10.1016/j.neuron.2014.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu T, Wang Y, Tian Y, Zhang J, Zhao J, Guo A (2018) The receptor channel formed by ppk25, ppk29 and ppk23 can sense the Drosophila female pheromone 7,11-heptacosadiene. Gene Brain Behav. https://doi.org/10.1111/gbb.12529

  29. Vijayan V, Thistle R, Liu T, Starostina E, Pikielny CW (2014) Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity. PLoS Genet 10(3):e1004238. https://doi.org/10.1371/journal.pgen.1004238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toda H, Zhao X, Dickson BJ (2012) The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell Rep 1(6):599–607. https://doi.org/10.1016/j.celrep.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  31. Lu B, LaMora A, Sun Y, Welsh MJ, Ben-Shahar Y (2012) ppk23-Dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster. PLoS Genet 8(3):e1002587. https://doi.org/10.1371/journal.pgen.1002587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Z, Wang Q, Wang Z (2010) The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J Neurosci 30(18):6247–6252. https://doi.org/10.1523/JNEUROSCI.0627-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cameron P, Hiroi M, Ngai J, Scott K (2010) The molecular basis for water taste in Drosophila. Nature 465(7294):91–95. https://doi.org/10.1038/nature09011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guntur AR, Gou B, Gu P, He R, Stern U, Xiang Y, Yang CH (2017) H2O2-sensitive isoforms of Drosophila melanogaster TRPA1 act in bitter-sensing gustatory neurons to promote avoidance of UV during egg-laying. Genetics 205(2):749–759. https://doi.org/10.1534/genetics.116.195172

    Article  CAS  PubMed  Google Scholar 

  35. Soldano A, Alpizar YA, Boonen B, Franco L, Lopez-Requena A, Liu G, Mora N, Yaksi E, Voets T, Vennekens R, Hassan BA, Talavera K (2016) Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. eLife 5:e13133. https://doi.org/10.7554/elife.13133

  36. Du EJ, Ahn TJ, Wen X, Seo DW, Na DL, Kwon JY, Choi M, Kim HW, Cho H, Kang K (2016) Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence. eLife 5:e18425. https://doi.org/10.7554/eLife.18425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang YV, Raghuwanshi RP, Shen WL, Montell C (2013) Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat Neurosci 16(10):1468–1476. https://doi.org/10.1038/nn.3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim SH, Lee Y, Akitake B, Woodward OM, Guggino WB, Montell C (2010) Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc Natl Acad Sci USA 107(18):8440–8445. https://doi.org/10.1073/pnas.1001425107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee MJ, Sung HY, Jo H, Kim HW, Choi MS, Kwon JY, Kang K (2017) Ionotropic receptor 76b is required for gustatory aversion to excessive Na+ in Drosophila. Mol Cells 40(10):787–795. https://doi.org/10.14348/molcells.2017.0160

    Article  CAS  Google Scholar 

  40. Kang K, Panzano VC, Chang EC, Ni L, Dainis AM, Jenkins AM, Regna K, Muskavitch MA, Garrity PA (2011) Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481(7379):76–80. https://doi.org/10.1038/nature10715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464(7288):597–600. https://doi.org/10.1038/nature08848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Amrein H (2017) Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons. Curr Biol CB 27(18):2741–2750.e2744. https://doi.org/10.1016/j.cub.2017.08.003

    Article  CAS  Google Scholar 

  43. Ahn JE, Chen Y, Amrein H (2017) Molecular basis of fatty acid taste in Drosophila. eLife 6:e30115. https://doi.org/10.7554/elife.30115

  44. Tauber JM, Brown EB, Li Y, Yurgel ME, Masek P, Keene AC (2017) A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste. PLoS Genet 13(11):e1007059. https://doi.org/10.1371/journal.pgen.1007059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hussain A, Zhang M, Ucpunar HK, Svensson T, Quillery E, Gompel N, Ignell R, Grunwald Kadow IC (2016) Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol 14(5):e1002454. https://doi.org/10.1371/journal.pbio.1002454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rimal S, Sang J, Poudel S, Thakur D, Montell C, Lee Y (2019) Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep 26(6):1432–1442 e1434. https://doi.org/10.1016/j.celrep.2019.01.042

  47. He Z, Luo Y, Shang X, Sun JS, Carlson JR (2019) Chemosensory sensilla of the Drosophila wing express a candidate ionotropic pheromone receptor. PLoS Biol 17(5):e2006619. https://doi.org/10.1371/journal.pbio.2006619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rimal S, Lee Y (2018) The multidimensional ionotropic receptors of Drosophila melanogaster. Insect Mol Biol 27(1):1–7. https://doi.org/10.1111/imb.12347

    Article  CAS  PubMed  Google Scholar 

  49. Joseph RM, Carlson JR (2015) Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet TIG 31(12):683–695. https://doi.org/10.1016/j.tig.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  50. Freeman EG, Dahanukar A (2015) Molecular neurobiology of Drosophila taste. Curr Opin Neurobiol 34:140–148. https://doi.org/10.1016/j.conb.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiao Y, Moon SJ, Wang X, Ren Q, Montell C (2008) Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol 18(22):1797–1801. https://doi.org/10.1016/j.cub.2008.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiao Y, Moon SJ, Montell C (2007) A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci USA 104(35):14110–14115. https://doi.org/10.1073/pnas.0702421104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Slone J, Daniels J, Amrein H (2007) Sugar receptors in Drosophila. Curr Biol 17(20):1809–1816. https://doi.org/10.1016/j.cub.2007.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miyamoto T, Amrein H (2014) Diverse roles for the Drosophila fructose sensor Gr43a. Fly (Austin) 8(1):19–25. https://doi.org/10.4161/fly.27241

    Article  Google Scholar 

  55. Miyamoto T, Slone J, Song X, Amrein H (2012) A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151(5):1113–1125. https://doi.org/10.1016/j.cell.2012.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McGinnis JP, Jiang H, Agha MA, Sanchez CP, Lange J, Yu Z, Marion-Poll F, Si K (2016) Immediate perception of a reward is distinct from the reward’s long-term salience. eLife 5:e22283. https://doi.org/10.7554/elife.22283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyamoto T, Chen Y, Slone J, Amrein H (2013) Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons. PLoS One 8(2):e56304. https://doi.org/10.1371/journal.pone.0056304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117(7):981–991. https://doi.org/10.1016/j.cell.2004.06.011

    Article  CAS  PubMed  Google Scholar 

  59. Thorne N, Chromey C, Bray S, Amrein H (2004) Taste perception and coding in Drosophila. Curr Biol 14(12):1065–1079. https://doi.org/10.1016/j.cub.2004.05.019

    Article  CAS  PubMed  Google Scholar 

  60. Thoma V, Knapek S, Arai S, Hartl M, Kohsaka H, Sirigrivatanawong P, Abe A, Hashimoto K, Tanimoto H (2016) Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila. Nat Commun 7:10678. https://doi.org/10.1038/ncomms10678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murata S, Brockmann A, Tanimura T (2017) Pharyngeal stimulation with sugar triggers local searching behavior in Drosophila. J Exp Biol 220(Pt 18):3231–3237. https://doi.org/10.1242/jeb.161646

    Article  PubMed  Google Scholar 

  62. Yapici N, Cohn R, Schusterreiter C, Ruta V, Vosshall LB (2016) A taste circuit that regulates ingestion by integrating food and hunger signals. Cell 165(3):715–729. https://doi.org/10.1016/j.cell.2016.02.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joseph RM, Sun JS, Tam E, Carlson JR (2017) A receptor and neuron that activate a circuit limiting sucrose consumption. eLife 6:e24992. https://doi.org/10.7554/elife.24992

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee Y, Moon SJ, Montell C (2009) Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci USA 106(11):4495–4500. https://doi.org/10.1073/pnas.0811744106

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C (2006) A taste receptor required for the caffeine response in vivo. Curr Biol 16(18):1812–1817. https://doi.org/10.1016/j.cub.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  66. Lee Y, Kim SH, Montell C (2010) Avoiding DEET through insect gustatory receptors. Neuron 67(4):555–561. https://doi.org/10.1016/j.neuron.2010.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shim J, Lee Y, Jeong YT, Kim Y, Lee MG, Montell C, Moon SJ (2015) The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat Commun 6:8867. https://doi.org/10.1038/ncomms9867

    Article  CAS  PubMed  Google Scholar 

  68. Poudel S, Kim Y, Gwak JS, Jeong S, Lee Y (2017) Gustatory receptor 22e is essential for sensing chloroquine and strychnine in Drosophila melanogaster. Insect Biochem Mol Biol 88:30–36. https://doi.org/10.1016/j.ibmb.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  69. Poudel S, Lee Y (2016) Gustatory receptors required for avoiding the toxic compound coumarin in Drosophila melanogaster. Mol Cells 39(4):310–315. https://doi.org/10.14348/molcells.2016.2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poudel S, Kim Y, Kim YT, Lee Y (2015) Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster. Insect Biochem Mol Biol 66:110–118. https://doi.org/10.1016/j.ibmb.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  71. Lee Y, Moon SJ, Wang Y, Montell C (2015) A Drosophila gustatory receptor required for strychnine sensation. Chem Sens 40(7):525–533. https://doi.org/10.1093/chemse/bjv038

    Article  CAS  Google Scholar 

  72. Sang J, Rimal S, Lee Y (2019) Gustatory receptor 28b is necessary for avoiding saponin in Drosophila melanogaster. EMBO Rep. https://doi.org/10.15252/embr.201847328

  73. Rimal S, Lee Y (2019) Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochem Mol Biol 111:103178. https://doi.org/10.1016/j.ibmb.2019.103178

    Article  CAS  PubMed  Google Scholar 

  74. Sung HY, Jeong YT, Lim JY, Kim H, Oh SM, Hwang SW, Kwon JY, Moon SJ (2017) Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nat Commun 8(1):1484. https://doi.org/10.1038/s41467-017-01639-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Delventhal R, Carlson JR (2016) Bitter taste receptors confer diverse functions to neurons. eLife 5:e11181. https://doi.org/10.7554/elife.11181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Walker SJ, Corrales-Carvajal VM, Ribeiro C (2015) Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr Biol CB 25(20):2621–2630. https://doi.org/10.1016/j.cub.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  77. Kim H, Jeong YT, Choi MS, Choi J, Moon SJ, Kwon JY (2017) Involvement of a Gr2a-expressing Drosophila pharyngeal gustatory receptor neuron in regulation of aversion to high-salt foods. Mol Cells 40(5):331–338. https://doi.org/10.14348/molcells.2017.0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Devineni AV, Sun B, Zhukovskaya A, Axel R (2019) Acetic acid activates distinct taste pathways in Drosophila to elicit opposing, state-dependent feeding responses. eLife. https://doi.org/10.7554/eLife.47677

    Article  PubMed  PubMed Central  Google Scholar 

  79. Deshpande SA, Yamada R, Mak CM, Hunter B, Soto Obando A, Hoxha S, Ja WW (2015) Acidic food pH increases palatability and consumption and extends Drosophila lifespan. J Nutr 145(12):2789–2796. https://doi.org/10.3945/jn.115.222380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen Y, Amrein H (2014) Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses. Curr Biol 24(17):1969–1977. https://doi.org/10.1016/j.cub.2014.07.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS (2010) Acid sensing by the Drosophila olfactory system. Nature 468(7324):691–695. https://doi.org/10.1038/nature09537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Joseph RM, Devineni AV, King IF, Heberlein U (2009) Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. Proc Natl Acad Sci USA 106(27):11352–11357. https://doi.org/10.1073/pnas.0901419106

    Article  PubMed  PubMed Central  Google Scholar 

  83. Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69(1):44–60. https://doi.org/10.1016/j.neuron.2010.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vargas MA, Luo N, Yamaguchi A, Kapahi P (2010) A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol 20(11):1006–1011. https://doi.org/10.1016/j.cub.2010.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ribeiro C, Dickson BJ (2010) Sex peptide receptor and neuronal TOR/S6 K signaling modulate nutrient balancing in Drosophila. Curr Biol 20(11):1000–1005. https://doi.org/10.1016/j.cub.2010.03.061

    Article  CAS  PubMed  Google Scholar 

  86. Park J, Carlson JR (2018) Physiological responses of the Drosophila labellum to amino acids. J Neurogen 32(1):27–36. https://doi.org/10.1080/01677063.2017.1406934

    Article  CAS  Google Scholar 

  87. Yang Z, Huang R, Fu X, Wang G, Qi W, Mao D, Shi Z, Shen WL, Wang L (2018) A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res 28(10):1013–1025. https://doi.org/10.1038/s41422-018-0084-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dus M, Lai JS, Gunapala KM, Min S, Tayler TD, Hergarden AC, Geraud E, Joseph CM, Suh GS (2015) Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron 87(1):139–151. https://doi.org/10.1016/j.neuron.2015.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Masek P, Keene AC (2013) Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. Plos Genet. https://doi.org/10.1371/journal.pgen.1003710

  90. Kim H, Kim H, Kwon JY, Seo JT, Shin DM, Moon SJ (2018) Drosophila Gr64e mediates fatty acid sensing via the phospholipase C pathway. PLoS Genet 14(2):e1007229. https://doi.org/10.1371/journal.pgen.1007229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448(7157):1054–1057. https://doi.org/10.1038/nature06101

    Article  CAS  PubMed  Google Scholar 

  92. Yang CH, Belawat P, Hafen E, Jan LY, Jan YN (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319(5870):1679–1683. https://doi.org/10.1126/science.1151842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zug R, Hammerstein P (2015) Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 6:1201. https://doi.org/10.3389/fmicb.2015.01201

    Article  PubMed  PubMed Central  Google Scholar 

  94. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  Google Scholar 

  95. Yanagawa A, Couto A, Sandoz JC, Hata T, Mitra A, Ali Agha M, Marion-Poll F (2019) LPS perception through taste-induced reflex in Drosophila melanogaster. J Insect Physiol 112:39–47. https://doi.org/10.1016/j.jinsphys.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  96. Yanagawa A, Guigue AM, Marion-Poll F (2014) Hygienic grooming is induced by contact chemicals in Drosophila melanogaster. Front Behav Neurosci 8:254. https://doi.org/10.3389/fnbeh.2014.00254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Min S, Ai M, Shin SA, Suh GS (2013) Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila. Proc Natl Acad Sci USA 110(14):E1321–E1329. https://doi.org/10.1073/pnas.1215680110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Delventhal R, Menuz K, Joseph R, Park J, Sun JS, Carlson JR (2017) The taste response to ammonia in Drosophila. Sci Rep 7:43754. https://doi.org/10.1038/srep43754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee Y, Poudel S, Kim Y, Thakur D, Montell C (2018) Calcium taste avoidance in Drosophila. Neuron 97(1):67–74.e64. https://doi.org/10.1016/j.neuron.2017.11.038

    Article  CAS  Google Scholar 

  100. LeDue EE, Mann K, Koch E, Chu B, Dakin R, Gordon MD (2016) Starvation-induced depotentiation of bitter taste in Drosophila. Curr Biol CB 26(21):2854–2861. https://doi.org/10.1016/j.cub.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  101. Youn H, Kirkhart C, Chia J, Scott K (2018) A subset of octopaminergic neurons that promotes feeding initiation in Drosophila melanogaster. PLoS One 13(6):e0198362. https://doi.org/10.1371/journal.pone.0198362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Inagaki HK, Panse KM, Anderson DJ (2014) Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84(4):806–820. https://doi.org/10.1016/j.neuron.2014.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Inagaki HK, Ben-Taboude-Leon S, Wong AM, Jagadish S, Ishimoto H, Barnea G, Kitamoto T, Axel R, Anderson DJ (2012) Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148(3):583–595. https://doi.org/10.1016/j.cell.2011.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang QP, Lin YQ, Zhang L, Wilson YA, Oyston LJ, Cotterell J, Qi Y, Khuong TM, Bakhshi N, Planchenault Y, Browman DT, Lau MT, Cole TA, Wong AC, Simpson SJ, Cole AR, Penninger JM, Herzog H, Neely GG (2016) Sucralose promotes food intake through NPY and a neuronal fasting response. Cell Metab 24(1):75–90. https://doi.org/10.1016/j.cmet.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  105. Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4(12):1182–1186. https://doi.org/10.1038/nn765

    Article  CAS  PubMed  Google Scholar 

  106. Hiroi M, Marion-Poll F, Tanimura T (2002) Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool Sci 19(9):1009–1018. https://doi.org/10.2108/zsj.19.1009

    Article  Google Scholar 

  107. Wisotsky Z, Medina A, Freeman E, Dahanukar A (2011) Evolutionary differences in food preference rely on Gr64e, a receptor for glycerol. Nat Neurosci 14(12):1534–1541. https://doi.org/10.1038/nn.2944

    Article  CAS  PubMed  Google Scholar 

  108. Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49(2):285–295. https://doi.org/10.1016/j.neuron.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  109. Yavuz A, Jagge C, Slone J, Amrein H (2014) A genetic tool kit for cellular and behavioral analyses of insect sugar receptors. Fly (Austin) 8(4):189–196. https://doi.org/10.1080/19336934.2015.1050569

    Article  Google Scholar 

  110. Raad H, Ferveur JF, Ledger N, Capovilla M, Robichon A (2016) Functional gustatory role of chemoreceptors in Drosophila wings. Cell Rep 15(7):1442–1454. https://doi.org/10.1016/j.celrep.2016.04.040

    Article  CAS  PubMed  Google Scholar 

  111. Freeman EG, Wisotsky Z, Dahanukar A (2014) Detection of sweet tastants by a conserved group of insect gustatory receptors. Proc Natl Acad Sci USA 111(4):1598–1603. https://doi.org/10.1073/pnas.1311724111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Meunier N, Marion-Poll F, Rospars JP, Tanimura T (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56(2):139–152. https://doi.org/10.1002/neu.10235

    Article  PubMed  Google Scholar 

  113. Lacaille F, Hiroi M, Twele R, Inoshita T, Umemoto D, Maniere G, Marion-Poll F, Ozaki M, Francke W, Cobb M, Everaerts C, Tanimura T, Ferveur JF (2007) An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS One 2(7):e661. https://doi.org/10.1371/journal.pone.0000661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. French AS, Sellier MJ, Ali Agha M, Guigue A, Chabaud MA, Reeb PD, Mitra A, Grau Y, Soustelle L, Marion-Poll F (2015) Dual mechanism for bitter avoidance in Drosophila. J Neurosci 35(9):3990–4004. https://doi.org/10.1523/jneurosci.1312-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Du EJ, Ahn TJ, Choi MS, Kwon I, Kim HW, Kwon JY, Kang K (2015) The mosquito repellent citronellal directly potentiates Drosophila TRPA1, facilitating feeding suppression. Mol Cells 38(10):911–917. https://doi.org/10.14348/molcells.2015.0215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Al-Anzi B, Tracey WD Jr, Benzer S (2006) Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1. Curr Biol 16(10):1034–1040. https://doi.org/10.1016/j.cub.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  117. Park JH, Chen J, Jang S, Ahn TJ, Kang K, Choi MS, Kwon JY (2016) A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett 590(4):493–500. https://doi.org/10.1002/1873-3468.12073

    Article  CAS  PubMed  Google Scholar 

  118. Toshima N, Tanimura T (2012) Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster. J Exp Biol 215(Pt 16):2827–2832. https://doi.org/10.1242/jeb.069146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lisa Baik and Vaibhav Menon for helpful comments on the manuscript. Work in A.D’s lab is funded by funds from the National Institutes of Health (R01DC013587, R21AI140065, and R01DC017390), DARPA (D18AC00026), and the University of California AESMF program. Y.-C.D.C. is a Howard Hughes Medical Institute International Student Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y-CDC and AD; Writing—Original Draft, Y-CDC, Writing—Review and Editing, Y-CDC and AD; Supervision, AD; Funding Acquisition, AD.

Corresponding author

Correspondence to Anupama Dahanukar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC.D., Dahanukar, A. Recent advances in the genetic basis of taste detection in Drosophila. Cell. Mol. Life Sci. 77, 1087–1101 (2020). https://doi.org/10.1007/s00018-019-03320-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03320-0

Keywords

Navigation