Skip to main content

Advertisement

Log in

Caenorhabditis elegans: a model to understand host–microbe interactions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Host–microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host–microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379

    Article  CAS  PubMed  Google Scholar 

  2. Levy M et al (2017) Dysbiosis and the immune system. Nat Rev Immunol 17(4):219

    Article  CAS  PubMed  Google Scholar 

  3. Sonnenburg JL, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535(7610):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu J et al (2018) Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci Rep 8(1):5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kers JG et al (2018) Host and environmental factors affecting the intestinal microbiota in chickens. Front Microbiol 9:235

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schloissnig S et al (2013) Genomic variation landscape of the human gut microbiome. Nature 493(7430):45

    Article  CAS  PubMed  Google Scholar 

  8. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fritz JV et al (2013) From meta-omics to causality: experimental models for human microbiome research. Microbiome 1(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227

    Article  CAS  PubMed  Google Scholar 

  12. Frézal L, Félix MA (2015) The natural history of model organisms: C. elegans outside the Petri dish. Elife 4:e05849

    Article  PubMed Central  Google Scholar 

  13. Hodgkin J (1987) Primary sex determination in the nematode C. elegans. Development 101(Supplement):5–16

    PubMed  Google Scholar 

  14. Kimble J, Ward S (1988) 7 Germ-line development and fertilization. Cold Spring Harb Monogr Arch 17:191–213

    Google Scholar 

  15. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stiernagle T (2006) Maintenance of C. elegans (February 11, 2006), WormBook, ed. The C. elegans research community, WormBook, https://doi.org/10.1895/wormbook. 1.101. 1

  17. Mylonakis E et al (2002) Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci 99(24):15675–15680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McGhee JD (2013) The Caenorhabditis elegans intestine. Wiley Interdiscip Rev Dev Biol 2(3):347–367

    Article  CAS  PubMed  Google Scholar 

  19. Rezzoagli C, Granato E, Kuemmerli R (2019) In vivo microscopy reveals the impact of Pseudomonas aeruginosa social interactions on host colonization. ISME J 13:2403–2414

  20. Gomez F et al (2012) Delayed accumulation of intestinal coliform bacteria enhances life span and stress resistance in Caenorhabditis elegans fed respiratory deficient E. coli. BMC Microbiol 12(1):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson O et al (2013) The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res 23(10):1749–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dickinson DJ et al (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dickinson DJ, Goldstein B (2016) CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202(3):885–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samuel BS et al (2016) Caenorhabditis elegans responses to bacteria from its natural habitats. Proc Natl Acad Sci 113(27):E3941–E3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dirksen P et al (2016) The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host–microbiome model. BMC Biol 14(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. JebaMercy G, Balamurugan K (2012) Effects of sequential infections of Caenorhabditis elegans with Staphylococcus aureus and Proteus mirabilis. Microbiol Immunol 56(12):825–835

    Article  CAS  PubMed  Google Scholar 

  27. Pukkila-Worley R, Ausubel FM, Mylonakis E (2011) Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog 7(6):e1002074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu W-H et al (2006) Restriction of vaccinia virus replication by a ced-3 and ced-4-dependent pathway in Caenorhabditis elegans. Proc Natl Acad Sci USA 103(11):4174–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zanni E et al (2015) Impact of a complex food microbiota on energy metabolism in the model organism Caenorhabditis elegans. BioMed Res Int 2015:12

  30. Park MR et al (2015) Bacillus licheniformis isolated from traditional Korean food resources enhances the longevity of Caenorhabditis elegans through serotonin signaling. J Agric Food Chem 63(47):10227–10233

    Article  CAS  PubMed  Google Scholar 

  31. Montalvo-Katz S et al (2013) Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect Immun 81(2):514–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komura T et al (2013) Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology 14(1):73–87

    Article  CAS  PubMed  Google Scholar 

  33. Iatsenko I et al (2014) B. subtilis GS67 protects C. áelegans from Gram-positive pathogens via fengycin-mediated microbial antagonism. Curr Biol 24(22):2720–2727

    Article  CAS  PubMed  Google Scholar 

  34. Berg M, Zhou XY, Shapira M (2016) Host-specific functional significance of Caenorhabditis gut commensals. Front Microbiol 7:1622

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pujol N et al (2008) Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol 18(7):481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dierking K, Yang W, Schulenburg H (2016) Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philos Trans R Soc B 371(1695):20150299

    Article  CAS  Google Scholar 

  37. Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Waterfield NR, Wren BW (2004) Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2(10):833

    Article  CAS  PubMed  Google Scholar 

  39. Berg M et al (2016) Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 10(8):1998

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shapira M (2017) Host–microbiota interactions in Caenorhabditis elegans and their significance. Curr Opin Microbiol 38:142–147

    Article  CAS  PubMed  Google Scholar 

  41. Dehingia M et al (2015) Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci Rep 5:18563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  43. Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76(3):473–493

    Article  CAS  PubMed  Google Scholar 

  44. Goodrich JK et al (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carmody RN et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17(1):72–84

    Article  CAS  PubMed  Google Scholar 

  46. Boulin T, Hobert O (2012) From genes to function: the C. elegans genetic toolbox. Wiley Interdiscip Rev Dev Biol 1(1):114–137

    Article  CAS  PubMed  Google Scholar 

  47. Kamath RS et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231

    Article  CAS  PubMed  Google Scholar 

  48. Zugasti O et al (2016) A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 14(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan MW et al (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci 96(5):2408–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohr S, Bakal C, Perrimon N (2010) Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79:37–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan M-W, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci 96(2):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shapira M et al (2006) A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc Natl Acad Sci 103(38):14086–14091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alegado RA, Tan MW (2008) Resistance to antimicrobial peptides contributes to persistence of Salmonella typhimurium in the C. elegans intestine. Cell Microbiol 10(6):1259–1273

    Article  CAS  PubMed  Google Scholar 

  54. Irazoqui JE et al (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6(7):e1000982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Irazoqui JE, Urbach JM, Ausubel FM (2010) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Melo JA, Ruvkun G (2012) Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C. elegans. Cell 149(2):452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ashe A et al (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2:e00994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sifri CD et al (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71(4):2208–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang R, Hou A (2013) Host–microbe interactions in Caenorhabditis elegans. ISRN Microbiol

  60. Pradel E et al (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci 104(7):2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hasshoff M et al (2007) The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis. FASEB J 21(8):1801–1812

    Article  CAS  PubMed  Google Scholar 

  62. Labrousse A et al (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10(23):1543–1545

    Article  CAS  PubMed  Google Scholar 

  63. Roeder T et al (2010) Caenopores are antimicrobial peptides in the nematode Caenorhabditis elegans instrumental in nutrition and immunity. Dev Comp Immunol 34(2):203–209

    Article  CAS  PubMed  Google Scholar 

  64. Mallo GV et al (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12(14):1209–1214

    Article  CAS  PubMed  Google Scholar 

  65. Van Der Hoeven R et al (2011) Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog 7(12):e1002453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Evans EA, Chen WC, Tan MW (2008) The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 7(6):879–893

    Article  CAS  PubMed  Google Scholar 

  67. Kim DH et al (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297(5581):623–626

    Article  CAS  PubMed  Google Scholar 

  68. Aballay A, Ausubel FM (2001) Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci 98(5):2735–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Zhang Y (2012) DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning. Proc Natl Acad Sci 109(42):17081–17086

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gammon DB et al (2017) The antiviral RNA interference response provides resistance to lethal arbovirus infection and vertical transmission in Caenorhabditis elegans. Curr Biol 27(6):795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wei J-Z et al (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci 100(5):2760–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Los FC et al (2011) RAB-5-and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe 9(2):147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garsin DA et al (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci 98(19):10892–10897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bae T et al (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci 101(33):12312–12317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomsen LE et al (2006) Caenorhabditis elegans is a model host for Listeria monocytogenes. Appl Environ Microbiol 72(2):1700–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huffman DL et al (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci 101(30):10995–11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bolz DD, Tenor JL, Aballay A (2010) A conserved PMK-1/p38 MAPK is required in Caenorhabditis elegans tissue-specific immune response to Yersinia pestis infection. J Biol Chem 285(14):10832–10840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Evans EA, Kawli T, Tan M-W (2008) Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4(10):e1000175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Estes KA et al (2010) bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci 107(5):2153–2158

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pellegrino MW et al (2014) Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516(7531):414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singh V, Aballay A (2009) Regulation of DAF-16-mediated innate immunity in Caenorhabditis elegans. J Biol Chem 284(51):35580–35587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Visvikis O et al (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40(6):896–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zugasti O et al (2014) Activation of a G protein–coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat Immunol 15(9):833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jansson H-B (1994) Adhesion of conidia of Drechmeria coniospora to Caenorhabditis elegans wild type and mutants. J Nematol 26(4):430

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Félix M-A et al (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 9(1):e1000586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guo X et al (2013) Homologous RIG-I–like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms. Proc Natl Acad Sci 110(40):16085–16090

    Article  PubMed  PubMed Central  Google Scholar 

  87. Guo Y et al (2017) The shift of the intestinal microbiome in the innate immunity-deficient mutant rde-1 strain of C. elegans upon Orsay virus infection. Front Microbiol 8:933

    Article  PubMed  PubMed Central  Google Scholar 

  88. King KC et al (2016) Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J 10(8):1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martín R et al (2013) Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mazmanian SK et al (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118

    Article  CAS  PubMed  Google Scholar 

  91. Watson E et al (2014) Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156(4):759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mellies JL et al (2006) The global regulator Ler is necessary for enteropathogenic Escherichia coli colonization of Caenorhabditis elegans. Infect Immun 74(1):64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qi B, Han M (2018) Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell 175(2):571–582

    Article  CAS  PubMed  Google Scholar 

  94. Zhou M et al (2014) Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One 9(2):e89004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Niu Q et al (2016) Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection. Sci Rep 6:20178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Metchnikoff E, Metchnikoff I (1908) The prolongation of life. GP Putnam’s Sons, New York, pp 234–301

    Google Scholar 

  97. Ganguly N et al (2011) ICMR-DBT guidelines for evaluation of probiotics in food. Indian J Med Res 134(1):22

    PubMed Central  Google Scholar 

  98. Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework—requirements to evidence basis. J Nutr 137(3):850S–853S

    Article  CAS  PubMed  Google Scholar 

  99. Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol 46:S1–S2

    Article  PubMed  Google Scholar 

  100. Hill C et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506

    Article  PubMed  Google Scholar 

  101. Rauch M, Lynch S (2012) The potential for probiotic manipulation of the gastrointestinal microbiome. Curr Opin Biotechnol 23(2):192–201

    Article  CAS  PubMed  Google Scholar 

  102. Fijan S, Šulc D, Steyer A (2018) Study of the in vitro antagonistic activity of various single-strain and multi-strain probiotics against Escherichia coli. Int J Environ Res Public Health 15(7):1539

    Article  CAS  PubMed Central  Google Scholar 

  103. Kim Y, Mylonakis E (2012) Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances Gram-positive immune responses. Infect Immun 80(7):2500–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kamaladevi A, Balamurugan K (2016) Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection. Food Funct 7(7):3211–3223

    Article  CAS  PubMed  Google Scholar 

  105. Zhou M et al (2014) Investigation into in vitro and in vivo models using intestinal epithelial IPEC-J2 cells and Caenorhabditis elegans for selecting probiotic candidates to control porcine enterotoxigenic Escherichia coli. J Appl Microbiol 117(1):217–226

    Article  CAS  PubMed  Google Scholar 

  106. Lee J et al (2015) Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections. Lett Appl Microbiol 61(6):523–530

    Article  CAS  PubMed  Google Scholar 

  107. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  PubMed  Google Scholar 

  108. Tenor JL, Aballay A (2008) A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9(1):103–109

    Article  CAS  PubMed  Google Scholar 

  109. Pujol N et al (2008) Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog 4(7):e1000105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yusuke K et al (2002) abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem J 361(2):221–230

    Article  Google Scholar 

  111. Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5(14):1307–1315

    Article  CAS  PubMed  Google Scholar 

  113. Chávez V et al (2007) Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176(3):1567–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Inoue H et al (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19(19):2278–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zou C-G et al (2013) The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity. PLoS Pathog 9(10):e1003660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meitzler JL, de Montellano PRO (2009) Caenorhabditis elegans and human dual oxidase 1 (DUOX1)“Peroxidase” domains INSIGHTS INTO HEME BINDING AND CATALYTIC ACTIVITY. J Biol Chem 284(28):18634–18643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miltsch SM, Seeberger PH, Lepenies B (2014) The C-type lectin-like domain containing proteins Clec-39 and Clec-49 are crucial for Caenorhabditis elegans immunity against Serratia marcescens infection. Dev Comp Immunol 45(1):67–73

    Article  CAS  PubMed  Google Scholar 

  118. Portal-Celhay C, Bradley ER, Blaser MJ (2012) Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans. BMC Microbiol 12(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Broderick NA (2016) Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila–microbe interactions. Philos Trans R Soc B Biol Sci 371(1695):20150295

    Article  CAS  Google Scholar 

  120. Wen L et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Qin J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55

    Article  CAS  PubMed  Google Scholar 

  122. Frank DN et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 104(34):13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cani PD et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet—induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

    Article  CAS  PubMed  Google Scholar 

  124. Lin J, Hackam DJ (2011) Worms, flies and four-legged friends: the applicability of biological models to the understanding of intestinal inflammatory diseases. Dis Models Mech 4(4):447–456

    Article  CAS  Google Scholar 

  125. Walker AK et al (2011) A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147(4):840–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chan JP et al (2019) Using bacterial transcriptomics to investigate targets of host–bacterial interactions in Caenorhabditis elegans. Sci Rep 9(1):5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Garigan D et al (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McGee MD et al (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10(4):699–710

    Article  CAS  PubMed  Google Scholar 

  129. Youngman MJ, Rogers ZN, Kim DH (2011) A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans. PLoS Genet 7(5):e1002082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rae R et al (2012) The importance of being regular: Caenorhabditis elegans and Pristionchus pacificus defecation mutants are hypersusceptible to bacterial pathogens. Int J Parasitol 42(8):747–753

    Article  PubMed  Google Scholar 

  131. Yilmaz LS, Walhout AJ (2014) Worms, bacteria, and micronutrients: an elegant model of our diet. Trends Genet 30(11):496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Asrar FM, O’Connor DL (2005) Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem 16(10):587–593

    Article  CAS  PubMed  Google Scholar 

  133. Lakoff A et al (2014) Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate. Am J Clin Nutr 100(5):1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Scott JM (1999) Folate and vitamin B 12. Proc Nutr Soc 58(2):441–448

    Article  CAS  PubMed  Google Scholar 

  135. Virk B et al (2012) Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol 10(1):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen-and xenobiotic-associated defenses. Cell 149(2):452–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438(7065):179

    Article  CAS  PubMed  Google Scholar 

  138. Chen Z et al (2013) Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans. Neuron 77(3):572–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hirotsu T, Iino Y (2005) Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes Cells 10(6):517–530

    Article  CAS  PubMed  Google Scholar 

  140. Oda S, Tomioka M, Iino Y (2011) Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. J Neurophysiol 106(1):301–308

    Article  CAS  PubMed  Google Scholar 

  141. Lee K, Mylonakis E (2017) An intestine-derived neuropeptide controls avoidance behavior in Caenorhabditis elegans. Cell Rep 20(10):2501–2512

    Article  CAS  PubMed  Google Scholar 

  142. Bernstein IL (1999) Taste aversion learning: a contemporary perspective. Nutrition 15(3):229–234

    Article  CAS  PubMed  Google Scholar 

  143. Klemme I, Karvonen A (1838) Learned parasite avoidance is driven by host personality and resistance to infection in a fish–trematode interaction. Proc R Soc B Biol Sci 2016(283):20161148

    Google Scholar 

  144. Carew TJ, Sahley CL (1986) Invertebrate learning and memory: from behavior to molecules. Annu Rev Neurosci 9(1):435–487

    Article  CAS  PubMed  Google Scholar 

  145. Ward-Fear G et al (2017) Eliciting conditioned taste aversion in lizards: live toxic prey are more effective than scent and taste cues alone. Integr Zool 12(2):112–120

    Article  PubMed  Google Scholar 

  146. Darmaillacq A-S et al (2004) Rapid taste aversion learning in adult cuttlefish, Sepia officinalis. Anim Behav 68(6):1291–1298

    Article  Google Scholar 

  147. Lee JH et al (2017) Indole-associated predator–prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ Microbiol 19(5):1776–1790

    Article  CAS  PubMed  Google Scholar 

  148. Zaltieri M et al (2015) α-Synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J Cell Sci 128(13):2231–2243

    Article  CAS  PubMed  Google Scholar 

  149. Watkins AL et al (2016) The prevalence and distribution of neurodegenerative compound-producing soil Streptomyces spp. Sci Rep 6:22566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ray A et al (2014) Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis 5(1):e984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen SG et al (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and Caenorhabditis elegans. Sci Rep 6:34477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brooks KK, Liang B, Watts JL (2009) The influence of bacterial diet on fat storage in C. elegans. PLoS One 4(10):e7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Haiser HJ, Turnbaugh PJ (2012) Is it time for a metagenomic basis of therapeutics? Science 336(6086):1253–1255

    Article  CAS  PubMed  Google Scholar 

  154. Shin N-R et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735

    Article  CAS  PubMed  Google Scholar 

  155. Smith DL Jr et al (2010) Metformin supplementation and life span in Fischer-344 rats. J Gerontol Ser A Biomed Sci Med Sci 65(5):468–474

    Article  CAS  Google Scholar 

  156. Cabreiro F et al (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ubeda C, Pamer EG (2012) Antibiotics, microbiota, and immune defense. Trends Immunol 33(9):459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1–2):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Swem LR et al (2009) A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 35(2):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Moy TI et al (2006) Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci 103(27):10414–10419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moy TI et al (2009) High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 4(7):527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Biagi E et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jeffery IB, Lynch DB, O’toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10(1):170

    Article  CAS  PubMed  Google Scholar 

  164. Lenaerts I et al (2008) Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. J Gerontol Ser A Biol Sci Med Sci 63(3):242–252

    Article  Google Scholar 

  165. MacNeil LT et al (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153(1):240–252

    Article  CAS  PubMed  Google Scholar 

  166. Han B et al (2017) Microbial genetic composition tunes host longevity. Cell 169(7):1249–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sonowal R et al (2017) Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci 114:E7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Donato V et al (2017) Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat Commun 8:14332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu H et al (2012) Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun 3:1073

    Article  CAS  PubMed  Google Scholar 

  170. Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295(5552):120–123

    Article  CAS  PubMed  Google Scholar 

  171. Saiki R et al (2008) Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q. Aging Cell 7(3):291–304

    Article  CAS  PubMed  Google Scholar 

  172. Baruah A et al (2014) CEP-1, the Caenorhabditis elegans p53 homolog, mediates opposing longevity outcomes in mitochondrial electron transport chain mutants. PLoS Genet 10(2):e1004097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Govindan JA et al (2015) Dialogue between E. coli free radical pathways and the mitochondria of C. elegans. Proc Natl Acad Sci 112(40):12456–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8(12):e1000556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci 109(15):5785–5790

    Article  PubMed  PubMed Central  Google Scholar 

  176. Portal-Celhay C, Blaser MJ (2012) Competition and resilience between founder and introduced bacteria in the Caenorhabditis elegans gut. Infect Immun 80(3):1288–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kwon G, Lee J, Lim Y-H (2016) Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 6:31713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Grompone G et al (2012) Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 7(12):e52493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nakagawa H et al (2016) Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 15(2):227–236

    Article  CAS  PubMed  Google Scholar 

  180. Blackwell TK et al (2015) SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545

    Article  CAS  PubMed  Google Scholar 

  182. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140

    Article  CAS  PubMed  Google Scholar 

  183. Gerbaba TK et al (2015) Giardia duodenalis-induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial–microbial interactions in the gut. Am J Physiol Gastrointest Liver Physiol 308(6):G550–G561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cruz MR et al (2013) Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun 81(1):189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lai C-H et al (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10(5):703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Greer EL et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tóth ML et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4(3):330–338

    Article  PubMed  Google Scholar 

  189. Jesudason MV, Balaji V, Densibai S (2006) Toxigenicity testing of clinical isolates of non-typhoidal salmonellae in Vero cell culture and Caenorhabditis elegans model. Indian J Med Res 123(6):821

    CAS  PubMed  Google Scholar 

  190. Kirienko NV et al (2013) Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13(4):406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Spanier B et al (2010) Yersinia enterocolitica infection and tcaA-dependent killing of Caenorhabditis elegans. Appl Environ Microbiol 76(18):6277–6285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Darby C et al (2002) Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417(6886):243

    Article  CAS  PubMed  Google Scholar 

  193. Burlinson P et al (2013) Pseudomonas fluorescens NZI7 repels grazing by C. elegans, a natural predator. ISME J 7(6):1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sivamaruthi BS et al (2011) Caenorhabditis elegans as a model for studying Cronobacter sakazakii ATCC BAA-894 pathogenesis. J Basic Microbiol 51(5):540–549

    Article  CAS  PubMed  Google Scholar 

  195. Sivamaruthi BS, Prasanth MI, Balamurugan K (2015) Alterations in Caenorhabditis elegans and Cronobacter sakazakii lipopolysaccharide during interaction. Arch Microbiol 197(2):327–337

    Article  CAS  PubMed  Google Scholar 

  196. Kurz CL et al (2003) Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22(7):1451–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sifri CD et al (2002) Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70(10):5647–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sahu SN et al (2012) Genomic analysis of immune response against Vibrio cholerae hemolysin in Caenorhabditis elegans. PLoS One 7(5):e38200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kamaladevi A et al (2013) Lactobacillus casei protects malathion induced oxidative stress and macromolecular changes in Caenorhabditis elegans. Pestic Biochem Physiol 105(3):213–223

    Article  CAS  Google Scholar 

  200. Martorell P et al (2016) Probiotic strain Bifidobacterium animalis subsp. lactis CECT 8145 reduces fat content and modulates lipid metabolism and antioxidant response in Caenorhabditis elegans. J Agric Food Chem 64(17):3462–3472

    Article  CAS  PubMed  Google Scholar 

  201. Fasseas MK et al (2013) Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity. Appl Microbiol Biotechnol 97(5):2109–2118

    Article  CAS  PubMed  Google Scholar 

  202. Murphy CT et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277

    Article  CAS  PubMed  Google Scholar 

  203. Medini K et al (2015) Chemical synthesis of A pore-forming antimicrobial protein, caenopore-5, by using native chemical ligation at a Glu–Cys site. ChemBioChem 16(2):328–336

    Article  CAS  PubMed  Google Scholar 

  204. Couillault C et al (2004) TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5:488

    Article  CAS  PubMed  Google Scholar 

  205. Zugasti O, Ewbank JJ (2009) Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10(3):249–256

    Article  CAS  PubMed  Google Scholar 

  206. Nathoo AN et al (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci 98(24):14000–14005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author AK is a recipient of junior research fellowship (DBT/JRF/BET-16/I/2016/AL/143) from Department of Biotechnology (DBT), Government of India. Caenorhabditis elegans has been established at the Institute of Advanced Study in Science and Technology (IASST) with the Grant from DBT under Unit of excellence project (BT/NE/550/U-EXCEL). We thank Dr. Atanu Adak for his useful comments on the manuscript. We are also thankful to Mr. William Barbeau (Lab Technician, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States of America) for helping us in improving the English grammar of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojibur Khan.

Ethics declarations

Conflict of interest

We hereby declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Baruah, A., Tomioka, M. et al. Caenorhabditis elegans: a model to understand host–microbe interactions. Cell. Mol. Life Sci. 77, 1229–1249 (2020). https://doi.org/10.1007/s00018-019-03319-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03319-7

Keywords

Navigation