Skip to main content

Advertisement

Log in

Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Systemic administration of chemotherapeutics by nanocarriers (NCs) functionalized with targeting agents provides a localized accumulation of drugs in the target tissues and cells. Advanced nanoscaled medicaments can enter into the tumor microenvironment (TME) and overcome the uniquely dysregulated biological settings of TME, including highly pressurized tumor interstitial fluid in an acidic milieu. Such multimodal nanomedicines seem to be one of the most effective treatment modalities against solid tumors such as colorectal cancer (CRC). To progress and invade, cancer cells overexpress various oncogenes and molecular markers such as epidermal growth factor receptors (EGFRs), which can be exploited for targeted delivery of nanoscaled drug delivery systems (DDSs). In fact, to develop effective personalized multimodal nanomedicines, the type of solid tumor and status of the disease in each patient should be taken into consideration. While the development of such multimodal-targeted nanomedicines is largely dependent on the expression level of oncomarkers, the type of NCs and homing/imaging agents play key roles in terms of their efficient applications. In this review, we provide deep insights into the development of EGFR-targeting nanomedicines and discuss various types of nanoscale DDSs (e.g., organic and inorganic nanoparticles) for targeting of the EGFR-positive solid tumors such as CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aaron J, Nitin N, Travis K et al (2007) Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J Biomed Opt 12:034007

    PubMed  Google Scholar 

  2. Abou-Jawde R, Choueiri T, Alemany C et al (2003) An overview of targeted treatments in cancer. Clin Ther 25:2121–2137

    CAS  PubMed  Google Scholar 

  3. Aggarwal S, Gupta S, Pabla D et al (2013) Gemcitabine-loaded PLGA-PEG immunonanoparticles for targeted chemotherapy of pancreatic cancer. Cancer Nanotechnol 4:145–157

    PubMed  PubMed Central  Google Scholar 

  4. Agustoni F, Suda K, Yu H et al (2019) EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: an updated review of clinical trials and new perspectives in biomarkers analysis. Cancer Treat Rev 72:15–27

    CAS  PubMed  Google Scholar 

  5. Akbarzadeh Khiavi M, Safary A, Somi MH (2019) Recent advances in targeted therapy of colorectal cancer: impacts of monoclonal antibodies nanoconjugates. Bioimpacts 9:139–142

    Google Scholar 

  6. Al Olayan A, Al Hussaini H, Jazieh AR (2012) The roles of epidermal growth factor receptor (EGFR) inhibitors in the management of lung cancer. J Infect Public Health 5(Suppl 1):S50–60

    PubMed  Google Scholar 

  7. Ali R, Wendt MK (2017) The paradoxical functions of EGFR during breast cancer progression. Signal Transduct Target Ther 2:16042

    PubMed  PubMed Central  Google Scholar 

  8. Asgharzadeh MR, Barar J, Pourseif MM et al (2017) Molecular machineries of pH dysregulation in tumor microenvironment: potential targets for cancer therapy. Bioimpacts 7:115–133

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Azhdarzadeh M, Atyabi F, Saei AA et al (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces 143:224–232

    CAS  PubMed  Google Scholar 

  10. Babu A, Templeton AK, Munshi A et al (2014) Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech 15:709–721

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bamrungsap S, Zhao Z, Chen T et al (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 7:1253–1271

    CAS  Google Scholar 

  12. Baradaran B, Majidi J, Farajnia S et al (2014) Targeted therapy of solid tumors by monoclonal antibody specific to epidermal growth factor receptor. Hum Antibodies 23:13–20

    CAS  PubMed  Google Scholar 

  13. Barar J, Kafil V, Majd MH et al (2015) Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. J Nanobiotechnol 13:26

    Google Scholar 

  14. Barar J, Omidi Y (2013) Dysregulated pH in tumor microenvironment checkmates cancer therapy. Bioimpacts 3:149–162

    PubMed  PubMed Central  Google Scholar 

  15. Barar J, Omidi Y (2014) Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts 4:3–14

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Battaglia L, Gallarate M, Peira E et al (2015) Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies. Nanotechnology 26:255102

    PubMed  Google Scholar 

  17. Bawarski WE, Chidlowsky E, Bharali DJ et al (2008) Emerging nanopharmaceuticals. Nanomed 4:273–282

    CAS  Google Scholar 

  18. Bazak R, Houri M, El Achy S et al (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784

    CAS  PubMed  Google Scholar 

  19. Bertotti A, Sassi F (2015) Molecular pathways: sensitivity and resistance to anti-EGFR antibodies. Clin Cancer Res 21:3377–3383

    CAS  PubMed  Google Scholar 

  20. Boeckx C, Van Den Bossche J, De Pauw I et al (2015) The hypoxic tumor microenvironment and drug resistance against EGFR inhibitors: preclinical study in cetuximab-sensitive head and neck squamous cell carcinoma cell lines. BMC Res Notes 8:203

    PubMed  PubMed Central  Google Scholar 

  21. Bouras A, Kaluzova M, Hadjipanayis CG (2015) Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles. J Neurooncol 124:13–22

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bregoli L, Movia D, Gavigan-Imedio JD et al (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed 12:81–103

    CAS  Google Scholar 

  23. Bronte G, Silvestris N, Castiglia M et al (2015) New findings on primary and acquired resistance to anti-EGFR therapy in metastatic colorectal cancer: do all roads lead to RAS? Oncotarget 6:24780–24796

    PubMed  PubMed Central  Google Scholar 

  24. Chang MH, Pai CL, Chen YC et al (2018) Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy. Nanomaterials (Basel) 8:121

    Google Scholar 

  25. Chen HL, Hsu FT, Kao YJ et al (2017) Identification of epidermal growth factor receptor-positive glioblastoma using lipid-encapsulated targeted superparamagnetic iron oxide nanoparticles in vitro. J Nanobiotechnol 15:86

    Google Scholar 

  26. Chen YW, Liu TY, Chen PJ et al (2016) A high-sensitivity and low-power theranostic nanosystem for cell SERS imaging and selectively photothermal therapy using anti-EGFR-conjugated reduced graphene oxide/mesoporous silica/AuNPs nanosheets. Small 12:1458–1468

    CAS  PubMed  Google Scholar 

  27. Cho K, Wang X, Nie S et al (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    CAS  PubMed  Google Scholar 

  28. Cho YS, Yoon TJ, Jang ES et al (2010) Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Lett 299:63–71

    CAS  PubMed  Google Scholar 

  29. Ciardiello F, Tortora G (2003) Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer 39:1348–1354

    CAS  PubMed  Google Scholar 

  30. Cisterna BA, Kamaly N, Choi WI et al (2016) Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond) 11:2443–2456

    CAS  Google Scholar 

  31. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075

    PubMed  Google Scholar 

  32. Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29:1604634

    Google Scholar 

  33. Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    CAS  PubMed  Google Scholar 

  34. Date AA, Naik B, Nagarsenker MS (2006) Novel drug delivery systems: potential in improving topical delivery of antiacne agents. Skin Pharmacol Physiol 19:2–16

    CAS  PubMed  Google Scholar 

  35. De Angelis ML, Bruselles A, Francescangeli F et al (2018) Colorectal cancer spheroid biobanks: multi-level approaches to drug sensitivity studies. Cell Biol Toxicol 34:459–469

    PubMed  Google Scholar 

  36. Deepagan VG, Sarmento B, Menon D et al (2012) In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond) 7:507–519

    CAS  Google Scholar 

  37. Dinarvand R, Cesar De Morais P, D’emanuele A (2012) Nanoparticles for targeted delivery of active agents against tumor cells. J Drug Deliv 2012:528123

    PubMed  PubMed Central  Google Scholar 

  38. Dinarvand R, Sepehri N, Manoochehri S et al (2011) Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomed 6:877–895

    CAS  Google Scholar 

  39. Dolatkhah R, Somi MH, Kermani IA et al (2017) A novel KRAS gene mutation report in sporadic colorectal cancer, from Northwest of Iran. Clin Case Rep 5:338–341

    PubMed  PubMed Central  Google Scholar 

  40. Ekladious I, Colson YL, Grinstaff MW (2018) Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 18:273–294

    Google Scholar 

  41. Eloy JO, Petrilli R, Trevizan LNF et al (2017) Immunoliposomes: a review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces 159:454–467

    CAS  PubMed  Google Scholar 

  42. Esfahani A, Somi MH, Ayromlou H et al (2016) The effect of n-3 polyunsaturated fatty acids on incidence and severity of oxaliplatin induced peripheral neuropathy: a randomized controlled trial. Biomark Res 4:13

    PubMed  PubMed Central  Google Scholar 

  43. Fathi M, Barar J (2017) Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. Bioimpacts 7:49–57

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fathi M, Majidi S, Zangabad PS et al (2018) Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 38:2110–2136

    PubMed  Google Scholar 

  45. Fathi M, Sahandi Zangabad P, Majidi S et al (2017) Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts 7:269–277

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Franovic A, Gunaratnam L, Smith K et al (2007) Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci USA 104:13092–13097

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ganesan P, Ramalingam P, Karthivashan G et al (2018) Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomed 13:1569–1583

    CAS  Google Scholar 

  48. Gentile P, Chiono V, Carmagnola I et al (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gillet JP, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. Methods Mol Biol 596:47–76

    CAS  PubMed  Google Scholar 

  50. Gillies ER, Jonsson TB, Frechet JM (2004) Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 126:11936–11943

    CAS  PubMed  Google Scholar 

  51. Glazer ES, Massey KL, Zhu C et al (2010) Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 148:319–324

    PubMed  Google Scholar 

  52. Hamidi A, Sharifi S, Davaran S et al (2012) Novel aldehyde-terminated dendrimers; synthesis and cytotoxicity assay. Bioimpacts 2:97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Harivardhan Reddy L, Sharma RK, Chuttani K et al (2005) Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release 105:185–198

    CAS  PubMed  Google Scholar 

  54. He K, Xu J, Liang J et al (2019) Discovery of a novel EGFR targeting antibody-drug conjugate, SHR-A1307, for the treatment of solid tumors resistant or refractory to anti-EGFR therapies. Mol Cancer Ther 18:1104–1114

    CAS  PubMed  Google Scholar 

  55. Heidari Majd M, Asgari D, Barar J et al (2013) Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf B Biointerfaces 106:117–125

    CAS  PubMed  Google Scholar 

  56. Herbst RS, Shin DM (2002) Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer 94:1593–1611

    CAS  PubMed  Google Scholar 

  57. Hsu HC, Thiam TK, Lu YJ et al (2016) Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget 7:22257–22270

    PubMed  PubMed Central  Google Scholar 

  58. Hsu WC, Cheng CN, Lee TW et al (2015) Cytotoxic effects of PEGylated anti-egfr immunoliposomes combined with doxorubicin and rhenium-188 against cancer cells. Anticancer Res 35:4777–4788

    CAS  PubMed  Google Scholar 

  59. Hu CM, Zhang L (2009) Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab 10:836–841

    CAS  PubMed  Google Scholar 

  60. Jiang W, Huang Y, An Y et al (2015) Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano 9:8689–8696

    CAS  PubMed  Google Scholar 

  61. Jung J, Jeong SY, Park SS et al (2015) A cisplatin-incorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity. Int J Oncol 46:1268–1274

    CAS  PubMed  Google Scholar 

  62. Kalomiraki M, Thermos K, Chaniotakis NA (2016) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomed 11:1–12

    CAS  Google Scholar 

  63. Kaluzova M, Bouras A, Machaidze R et al (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6:8788–8806

    PubMed  PubMed Central  Google Scholar 

  64. Kamaly N, Yameen B, Wu J et al (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kao HW, Lin YY, Chen CC et al (2014) Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model. Nanotechnology 25:295102

    PubMed  Google Scholar 

  66. Kapoor DN, Bhatia A, Kaur R et al (2015) PLGA: a unique polymer for drug delivery. Ther Deliv 6:41–58

    CAS  PubMed  Google Scholar 

  67. Karra N, Nassar T, Ripin AN et al (2013) Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small 9:4221–4236

    CAS  PubMed  Google Scholar 

  68. Kearns JD, Bukhalid R, Sevecka M et al (2015) Enhanced targeting of the EGFR network with MM-151, an oligoclonal anti-egfr antibody therapeutic. Mol Cancer Ther 14:1625–1636

    CAS  PubMed  Google Scholar 

  69. Kedar U, Phutane P, Shidhaye S et al (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed 6:714–729

    CAS  Google Scholar 

  70. Khiavi MA, Safary A, Aghanejad A et al (2019) Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells. Colloids Surf A Physicochem Eng Asp 572:333–344

    Google Scholar 

  71. Khosa A, Reddi S, Saha RN (2018) Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613

    CAS  PubMed  Google Scholar 

  72. Khosroushahi AY, Naderi-Manesh H, Yeganeh H et al (2012) Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities. J Nanobiotechnol 10:2

    CAS  Google Scholar 

  73. Kim IY, Kang YS, Lee DS et al (2009) Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release 140:55–60

    CAS  PubMed  Google Scholar 

  74. Kim JH, Kim Y, Bae KH et al (2015) Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles. Mol Pharm 12:1230–1241

    CAS  PubMed  Google Scholar 

  75. Koning GA, Fretz MM, Woroniecka U et al (2004) Targeting liposomes to tumor endothelial cells for neutron capture therapy. Appl Radiat Isot 61:963–967

    CAS  PubMed  Google Scholar 

  76. Kotelevets L, Chastre E, Desmaele D et al (2016) Nanotechnologies for the treatment of colon cancer: from old drugs to new hope. Int J Pharm 514:24–40

    CAS  PubMed  Google Scholar 

  77. Krasinskas AM (2011) EGFR signaling in colorectal carcinoma. Patholog Res Int 2011:932932

    PubMed  PubMed Central  Google Scholar 

  78. Kumari P, Ghosh B, Biswas S (2016) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24:179–191

    CAS  PubMed  Google Scholar 

  79. Kutty RV, Chia SL, Setyawati MI et al (2015) In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials 63:58–69

    CAS  PubMed  Google Scholar 

  80. Lee CC, Mackay JA, Frechet JM et al (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    CAS  PubMed  Google Scholar 

  81. Lee J, Choi Y, Kim K et al (2010) Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots. Bioconjug Chem 21:940–946

    CAS  PubMed  Google Scholar 

  82. Lee MS, Kopetz S (2015) Current and future approaches to target the epidermal growth factor receptor and its downstream signaling in metastatic colorectal cancer. Clin Colorectal Cancer 14:203–218

    PubMed  Google Scholar 

  83. Lee MS, Kopetz S (2014) Novel therapies in development for metastatic colorectal cancer. Gastrointest Cancer Res 7:S2–7

    PubMed  PubMed Central  Google Scholar 

  84. Lee PC, Chiou YC, Wong JM et al (2013) Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials 34:8756–8765

    CAS  PubMed  Google Scholar 

  85. Leung SL, Zha Z, Cohn C et al (2014) Anti-EGFR antibody conjugated organic-inorganic hybrid lipid nanovesicles selectively target tumor cells. Colloids Surf B Biointerfaces 121:141–149

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li S, Goins B, Hrycushko BA et al (2012) Feasibility of eradication of breast cancer cells remaining in postlumpectomy cavity and draining lymph nodes following intracavitary injection of radioactive immunoliposomes. Mol Pharm 9:2513–2522

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Du Y, Liang X et al (2018) EGFR-targeted liposomal nanohybrid cerasomes: theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer. Nanoscale 10:16738–16749

    CAS  PubMed  Google Scholar 

  88. Li Z, Tan S, Li S et al (2017) Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep 38:611–624

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li Z, Wang M, Yao X et al (2019) Development of a novel EGFR-targeting antibody-drug conjugate for pancreatic cancer therapy. Target Oncol 14:93–105

    PubMed  Google Scholar 

  90. Lu B, Lv X, Le Y (2019) Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers 11:304

    PubMed Central  Google Scholar 

  91. Madaan K, Kumar S, Poonia N et al (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139–150

    PubMed  PubMed Central  Google Scholar 

  92. Madani SY, Shabani F, Dwek MV et al (2013) Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int J Nanomed 8:941–950

    Google Scholar 

  93. Majidi J, Barar J, Baradaran B et al (2009) Target therapy of cancer: implementation of monoclonal antibodies and nanobodies. Hum Antibodies 18:81–100

    CAS  PubMed  Google Scholar 

  94. Mamot C, Ritschard R, Kung W et al (2006) EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J Drug Target 14:215–223

    CAS  PubMed  Google Scholar 

  95. Mandal A, Bisht R, Rupenthal ID et al (2017) Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release 248:96–116

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Markman B, Atzori F, Perez-Garcia J et al (2010) Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol 21:683–691

    CAS  PubMed  Google Scholar 

  97. Martinelli E, De Palma R, Orditura M et al (2009) Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol 158:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Master AM, Sen Gupta A (2012) EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine (Lond) 7:1895–1906

    CAS  Google Scholar 

  99. Mato E, Puras G, Bell O et al (2015) Selective antitumoral effect of sorafenib loaded PLGA nanoparticles conjugated with cetuximab on undifferentiated/anaplastic thyroid carcinoma cells. J Nanomed Nanotechnol 6:2–10

    Google Scholar 

  100. Matthaiou EI, Barar J, Sandaltzopoulos R et al (2014) Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer. Int J Nanomed 9:1855–1870

    Google Scholar 

  101. Mattheolabakis G, Rigas B, Constantinides PP (2012) Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond) 7:1577–1590

    CAS  Google Scholar 

  102. Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13:105–119

    CAS  PubMed  Google Scholar 

  103. Mir Y, Elrington SA, Hasan T (2013) A new nanoconstruct for epidermal growth factor receptor-targeted photo-immunotherapy of ovarian cancer. Nanomed 9:1114–1122

    CAS  Google Scholar 

  104. Mishra J, Drummond J, Quazi SH et al (2013) Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol 86:232–250

    PubMed  Google Scholar 

  105. Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15:842–850

    CAS  PubMed  Google Scholar 

  106. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  107. Molinari C, Marisi G, Passardi A et al (2018) Heterogeneity in colorectal cancer: a challenge for personalized medicine? Int J Mol Sci 19:3733

    PubMed Central  Google Scholar 

  108. Mondal G, Almawash S, Chaudhary AK et al (2017) EGFR-targeted cationic polymeric mixed micelles for codelivery of gemcitabine and miR-205 for treating advanced pancreatic cancer. Mol Pharm 14:3121–3133

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Montagut C, Argiles G, Ciardiello F et al (2018) Efficacy of Sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-EGFR therapy and molecularly selected by circulating tumor DNA analyses: a phase 2 randomized clinical trial. JAMA Oncol 4:e175245

    PubMed  PubMed Central  Google Scholar 

  110. Mortensen JH, Jeppesen M, Pilgaard L et al (2013) Targeted antiepidermal growth factor receptor (cetuximab) immunoliposomes enhance cellular uptake in vitro and exhibit increased accumulation in an intracranial model of glioblastoma multiforme. J Drug Deliv 2013:209205

    PubMed  PubMed Central  Google Scholar 

  111. Mu Q, Yu J, Mcconnachie LA et al (2018) Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 26:435–447

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Muhammad S, Jiang Z, Liu Z et al (2013) The role of EGFR monoclonal antibodies (MoABs) cetuximab/panitumab, and BRAF inhibitors in BRAF mutated colorectal cancer. J Gastrointest Oncol 4:72–81

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nadimi AE, Ebrahimipour SY, Afshar EG et al (2018) Nano-scale drug delivery systems for antiarrhythmic agents. Eur J Med Chem 157:1153–1163

    CAS  PubMed  Google Scholar 

  114. Najar AG, Pashaei-Asl R, Omidi Y et al (2013) EGFR antisense oligonucleotides encapsulated with nanoparticles decrease EGFR, MAPK1 and STAT5 expression in a human colon cancer cell line. Asian Pac J Cancer Prev 14:495–498

    PubMed  Google Scholar 

  115. Nakhlband A, Barar J, Bidmeshkipour A et al (2010) Bioimpacts of anti epidermal growth factor receptor antisense complexed with polyamidoamine dendrimers in human lung epithelial adenocarcinoma cells. J Biomed Nanotechnol 6:360–369

    CAS  PubMed  Google Scholar 

  116. Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenge. J Nanomedic Nanotechnol 2:103e

    Google Scholar 

  117. Nobuhara Y, Onoda N, Yamashita Y et al (2005) Efficacy of epidermal growth factor receptor-targeted molecular therapy in anaplastic thyroid cancer cell lines. Br J Cancer 92:1110–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Nomani A, Haririan I, Rahimnia R et al (2010) Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio. Int J Nanomed 5:359–369

    CAS  Google Scholar 

  119. Nourazarian AR, Najar AG, Farajnia S et al (2012) Combined EGFR and c-Src antisense oligodeoxynucleotides encapsulated with PAMAM Denderimers inhibit HT-29 colon cancer cell proliferation. Asian Pac J Cancer Prev 13:4751–4756

    PubMed  Google Scholar 

  120. Nourazarian AR, Pashaei-Asl R, Omidi Y et al (2012) c-Src antisense complexed with PAMAM denderimes decreases of c-Src expression and EGFR-dependent downstream genes in the human HT-29 colon cancer cell line. Asian Pac J Cancer Prev 13:2235–2240

    PubMed  Google Scholar 

  121. Omidi Y, Barar J (2009) Induction of human alveolar epithelial cell growth factor receptors by dendrimeric nanostructures. Int J Toxicol 28:113–122

    CAS  PubMed  Google Scholar 

  122. Omidi Y, Barar J (2014) Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts 4:55–67

    PubMed  PubMed Central  Google Scholar 

  123. Omidi Y, Hollins AJ, Drayton RM et al (2005) Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J Drug Target 13:431–443

    CAS  PubMed  Google Scholar 

  124. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22:1401

    PubMed Central  Google Scholar 

  125. Patel J, Amrutiya J, Bhatt P et al (2018) Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul 35:204–217

    CAS  PubMed  Google Scholar 

  126. Patel NR, Pattni BS, Abouzeid AH et al (2013) Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 65:1748–1762

    CAS  PubMed  Google Scholar 

  127. Pathak A, Tanmay M, Murthy R (2012) Development and characterization of docetaxel loaded anti-FGFR-1 modified solid lipid nanoparticles for breast cancer targeting. Int J Adv Pharm Biol Chem 1:381–387

    Google Scholar 

  128. Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    CAS  PubMed  Google Scholar 

  129. Perez-Herrero E, Fernandez-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    CAS  PubMed  Google Scholar 

  130. Petrilli R, Eloy JO, Lee RJ et al (2018) Preparation of immunoliposomes by direct coupling of antibodies based on a thioether bond. Methods Mol Biol 1674:229–237

    CAS  PubMed  Google Scholar 

  131. Pietersz GA, Wang X, Yap ML et al (2017) Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 12:1873–1889

    CAS  Google Scholar 

  132. Pillai G (2014) Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 1:13

    Google Scholar 

  133. Portnoy E, Lecht S, Lazarovici P et al (2011) Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomed 7:480–488

    CAS  Google Scholar 

  134. Rangel-Yagui CO, Pessoa A Jr, Tavares LC (2005) Micellar solubilization of drugs. J Pharm Pharm Sci 8:147–165

    CAS  PubMed  Google Scholar 

  135. Raymond E, Faivre S, Armand JP (2000) Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 60(Suppl 1):15–23 (discussion 41-12)

    CAS  PubMed  Google Scholar 

  136. Rezaiemanesh A, Majidi J, Baradaran B et al (2010) Impacts of anti-EGFR monoclonal antibody in prostate cancer PC3 cells. Hum Antibodies 19:63–70

    CAS  PubMed  Google Scholar 

  137. Safary A, Akbarzadeh Khiavi M, Mousavi R et al (2018) Enzyme replacement therapies: what is the best option? Bioimpacts 8:153–157

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Safary A, Akbarzadeh Khiavi M, Omidi Y et al (2019) Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci 76:3363–3381

    CAS  PubMed  Google Scholar 

  139. Safary A, Moniri R, Hamzeh-Mivehroud M et al (2016) Identification and molecular characterization of genes coding pharmaceutically important enzymes from halo-thermo tolerant bacillus. Adv Pharm Bull 6:551–561

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Saleem H, Kulsoom Abdul U, Kucukosmanoglu A et al (2019) The TICking clock of EGFR therapy resistance in glioblastoma: target Independence or target Compensation. Drug Resist Update 43:29–37

    Google Scholar 

  141. Satija J, Gupta U, Jain NK (2007) Pharmaceutical and biomedical potential of surface engineered dendrimers. Crit Rev Ther Drug Carrier Syst 24:257–306

    CAS  PubMed  Google Scholar 

  142. Senapati S, Mahanta AK, Kumar S et al (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7

    PubMed  PubMed Central  Google Scholar 

  143. Seshacharyulu P, Ponnusamy MP, Haridas D et al (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sforza V, Martinelli E, Ciardiello F et al (2016) Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer. World J Gastroenterol 22:6345–6361

    PubMed  PubMed Central  Google Scholar 

  145. Shih YH, Luo TY, Chiang PF et al (2017) EGFR-targeted micelles containing near-infrared dye for enhanced photothermal therapy in colorectal cancer. J Control Release 258:196–207

    CAS  PubMed  Google Scholar 

  146. Sousa F, Cruz A, Pinto IM et al (2018) Nanoparticles provide long-term stability of bevacizumab preserving its antiangiogenic activity. Acta Biomater 78:285–295

    CAS  PubMed  Google Scholar 

  147. Sreeranganathan M, Uthaman S, Sarmento B et al (2017) In vivo evaluation of cetuximab-conjugated poly(gamma-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. Int J Nanomed 12:7165–7182

    CAS  Google Scholar 

  148. Stevens PJ, Sekido M, Lee RJ (2004) A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res 21:2153–2157

    CAS  PubMed  Google Scholar 

  149. Stivarou T, Patsavoudi E (2015) Extracellular molecules involved in cancer cell invasion. Cancers (Basel) 7:238–265

    CAS  Google Scholar 

  150. Su H, Liao Y, Wu F et al (2018) Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells. Colloids Surf B Biointerfaces 170:194–200

    CAS  PubMed  Google Scholar 

  151. Suk JS, Xu Q, Kim N et al (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    CAS  PubMed  Google Scholar 

  152. Sun T, Zhang YS, Pang B et al (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 53:12320–12364

    CAS  PubMed  Google Scholar 

  153. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    CAS  PubMed  Google Scholar 

  154. Taratula O, Garbuzenko OB, Chen AM et al (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 19:900–914

    CAS  PubMed  Google Scholar 

  155. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    CAS  PubMed  Google Scholar 

  156. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    CAS  PubMed  Google Scholar 

  157. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    PubMed  Google Scholar 

  158. Tran S, Degiovanni PJ, Piel B et al (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6:44

    PubMed  PubMed Central  Google Scholar 

  159. Tseng SH, Chou MY, Chu IM (2015) Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Int J Nanomed 10:3663–3685

    CAS  Google Scholar 

  160. Van Emburgh BO, Arena S, Siravegna G et al (2016) Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat Commun 7:13665

    PubMed  PubMed Central  Google Scholar 

  161. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. P t 42:742–755

    PubMed  PubMed Central  Google Scholar 

  162. Von Roemeling C, Jiang W, Chan CK et al (2017) Breaking Down the Barriers to Precision Cancer Nanomedicine. Trends Biotechnol 35:159–171

    Google Scholar 

  163. Wang AZ, Gu F, Zhang L et al (2008) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8:1063–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang JK, Zhou YY, Guo SJ et al (2017) Cetuximab conjugated and doxorubicin loaded silica nanoparticles for tumor-targeting and tumor microenvironment responsive binary drug delivery of liver cancer therapy. Mater Sci Eng C Mater Biol Appl 76:944–950

    CAS  PubMed  Google Scholar 

  165. Wang L, An Y, Yuan C et al (2015) GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells. Int J Nanomed 10:2507–2519

    CAS  Google Scholar 

  166. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9:52

    Google Scholar 

  167. Wicki A, Witzigmann D, Balasubramanian V et al (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    CAS  PubMed  Google Scholar 

  168. Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65:1566–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wong OK, Tran TT, Ho WH et al (2018) RN765C, a low affinity EGFR antibody drug conjugate with potent anti-tumor activity in preclinical solid tumor models. Oncotarget 9:33446–33458

    PubMed  PubMed Central  Google Scholar 

  170. Wu G, Barth RF, Yang W et al (2006) Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 5:52–59

    CAS  PubMed  Google Scholar 

  171. Xu W, Jing H, Zhang F (2016) Epidermal growth factor receptor-targeted therapy in colorectal cancer. Front Biosci (Landmark Ed) 21:410–418

    CAS  Google Scholar 

  172. Yang C, Fu ZX (2014) Liposomal delivery and polyethylene glycol-liposomal oxaliplatin for the treatment of colorectal cancer (Review). Biomed Rep 2:335–339

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang Y, Yu C (2016) Advances in silica based nanoparticles for targeted cancer therapy. Nanomed 12:317–332

    CAS  Google Scholar 

  174. Yokoyama M (2014) Polymeric micelles as drug carriers: their lights and shadows. J Drug Target 22:576–583

    CAS  PubMed  Google Scholar 

  175. Yokoyama T, Tam J, Kuroda S et al (2011) EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS One 6:e25507

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Yook S, Cai Z, Lu Y et al (2015) Radiation nanomedicine for EGFR-positive breast cancer: panitumumab-modified gold nanoparticles complexed to the beta-particle-emitter, (177)Lu. Mol Pharm 12:3963–3972

    CAS  PubMed  Google Scholar 

  177. Yoon AR, Kasala D, Li Y et al (2016) Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J Control Release 231:2–16

    CAS  PubMed  Google Scholar 

  178. Yu B, Tai HC, Xue W et al (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27:286–298

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Yuan Y, Cai T, Xia X et al (2016) Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv 23:3350–3357

    CAS  PubMed  Google Scholar 

  180. Zalba S, Contreras AM, Haeri A et al (2015) Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J Control Release 210:26–38

    CAS  PubMed  Google Scholar 

  181. Zhang YJ, Tian XQ, Sun DF et al (2009) Combined inhibition of MEK and mTOR signaling inhibits initiation and progression of colorectal cancer. Cancer Invest 27:273–285

    CAS  PubMed  Google Scholar 

  182. Zhao B, Wang L, Qiu H et al (2017) Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 8:3980–4000

    PubMed  Google Scholar 

  183. Zhao CY, Cheng R, Yang Z et al (2018) Nanotechnology for cancer therapy based on chemotherapy. Molecules 23:826

    PubMed Central  Google Scholar 

  184. Zhou Q, Zhang L, Yang T et al (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed 13:2921–2942

    CAS  Google Scholar 

Download references

Acknowledgements

This work is a part of a Ph.D. thesis supported (Grant No: 145/261) by the Research Center for Liver and gastrointestinal diseases, Tabriz University of Medical Sciences and Iran National Science Foundation (INSF) (Grant#: 96010102). The authors wish to acknowledge the technical support provided by the Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences. The kind help from Mrs. R Mousavi is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Somi or Yadollah Omidi.

Ethics declarations

Conflict of interest

The authors declare that this article has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh Khiavi, M., Safary, A., Barar, J. et al. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Cell. Mol. Life Sci. 77, 997–1019 (2020). https://doi.org/10.1007/s00018-019-03305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03305-z

Keywords

Navigation