Skip to main content

Advertisement

Log in

miR-124-3p is a chronic regulator of gene expression after brain injury

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score = − 5.146, p < 0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p < 0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r = − 0.647, p < 0.05; r = − 0.629, p < 0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378

    PubMed  Google Scholar 

  2. Wong VS, Langley B (2016) Epigenetic changes following traumatic brain injury and their implications for outcome, recovery and therapy. Neurosci Lett 625:26–33

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rola R, Mizumatsu S, Otsuka S, Morhardt DR, Noble-Haeusslein LJ, Fishman K et al (2006) Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Exp Neurol 202(1):189–199

    CAS  PubMed  Google Scholar 

  4. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864

    CAS  PubMed  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    CAS  PubMed  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  7. Liu L, Sun T, Liu Z, Chen X, Zhao L, Qu G et al (2014) Traumatic brain injury dysregulates MicroRNAs to modulate cell signaling in rat hippocampus. PLoS One 9(8):e103948

    PubMed  PubMed Central  Google Scholar 

  8. Sandhir R, Gregory E, Berman NEJ (2014) Differential response of miRNA-21 and its targets after traumatic brain injury in aging mice. Neurochem Int 78:117–121

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, Borroto C et al (2014) Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci 34(30):10055–10071

    PubMed  PubMed Central  Google Scholar 

  10. Miao W, Bao TH, Han JH, Yin M, Yan Y, Wang WW et al (2015) Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex. Braz J Med Biol Res 48(5):433–439

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang W, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE (2015) Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol 265:84–93

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bao T, Miao W, Han J, Yin M, Yan Y, Wang W et al (2014) Spontaneous running wheel improves cognitive functions of mouse associated with miRNA expressional alteration in hippocampus following traumatic brain injury. J Mol Neurosci 54(4):622–629

    CAS  PubMed  Google Scholar 

  13. Meissner L, Gallozzi M, Balbi M, Schwarzmaier S, Tiedt S, Terpolilli NA et al (2016) Temporal profile of microRNA expression in contused cortex after traumatic brain injury in mice. J Neurotrauma 33(8):713–720

    PubMed  Google Scholar 

  14. Valiyaveettil M, Alamneh YA, Miller S-, Hammamieh R, Arun P, Wang Y et al (2013) Modulation of cholinergic pathways and inflammatory mediators in blast-induced traumatic brain injury. Chem Biol Interact 203(1):371–375

    CAS  PubMed  Google Scholar 

  15. Wang Y, Guo F, Pan C, Lou Y, Zhang P, Guo S et al (2012) Effects of low temperatures on proliferation-related signaling pathways in the hippocampus after traumatic brain injury. Exp Biol Med 237(12):1424–1432

    CAS  Google Scholar 

  16. Truettner JS, Alonso OF, Bramlett HM, Dietrich WD (2011) Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab 31(9):1897–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Truettner JS, Motti D, Dietrich WD (2013) MicroRNA overexpression increases cortical neuronal vulnerability to injury. Brain Res 1533:122–130

    CAS  PubMed  Google Scholar 

  18. Hu Z, Yu D, Almeida-Suhett C, Tu K, Marini AM, Eiden L et al (2012) Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS One 7(6):e39357

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Redell JB, Liu Y, Dash PK (2009) Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J Neurosci Res 87(6):1435–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Redell JB, Zhao J, Dash PK (2011) Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res 89(2):212–221

    CAS  PubMed  Google Scholar 

  21. Sharma A, Chandran R, Barry ES, Bhomia M, Hutchison MA, Balakathiresan NS et al (2014) Identification of serum MicroRNA signatures for diagnosis of mild traumatic brain injury in a closed head injury model. PLoS One 9(11):e112019

    PubMed  PubMed Central  Google Scholar 

  22. Schober K, Ondruschka B, Dreßler J, Abend M (2015) Detection of hypoxia markers in the cerebellum after a traumatic frontal cortex injury: a human postmortem gene expression analysis. Int J Leg Med 129(4):701–707

    CAS  Google Scholar 

  23. Balakathiresan N, Bhomia M, Chandran R, Chavko M, McCarron RM, Maheshwari RK (2012) MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma 29(7):1379–1387

    PubMed  PubMed Central  Google Scholar 

  24. Taheri S, Tanriverdi F, Zararsiz G, Elbuken G, Ulutabanca H, Karaca Z et al (2016) Circulating microRNAs as potential biomarkers for traumatic brain injury-induced hypopituitarism. J Neurotrauma 33(20):1818–1825

    PubMed  Google Scholar 

  25. Redell JB, Moore AN, Ward NH, Hergenroeder GW, Dash PK (2010) Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma 27(12):2147–2156

    PubMed  PubMed Central  Google Scholar 

  26. You W, Tang Q, Wang L, Lei J, Feng J, Mao Q et al (2016) Alteration of microRNA expression in cerebrospinal fluid of unconscious patients after traumatic brain injury and a bioinformatic analysis of related single nucleotide polymorphisms. Chin J Traumatol Eng Ed 19(1):11–15

    Google Scholar 

  27. Ge X, Lei P, Wang H, Zhang A, Han Z, Chen X et al (2014) MiR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 4:6718. https://doi.org/10.1038/srep06718

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ge X, Han Z, Chen F, Wang H, Zhang B, Jiang R et al (2015) MiR-21 alleviates secondary blood–brain barrier damage after traumatic brain injury in rats. Brain Res 1603:150–157

    CAS  PubMed  Google Scholar 

  29. Jadhav SP, Kamath SP, Choolani M, Lu J, Dheen ST (2014) MicroRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. J Neurochem 130(3):388–401

    CAS  PubMed  Google Scholar 

  30. Han Z, Chen F, Ge X, Tan J, Lei P, Zhang J (2014) MiR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res 1582:12–20

    CAS  PubMed  Google Scholar 

  31. Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG et al (2016) MiR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 23(4):654–668

    CAS  PubMed  Google Scholar 

  32. Hu T, Zhou F-, Chang Y-, Li Y-, Liu G-, Hong Y et al (2015) miR21 is associated with the cognitive improvement following voluntary running wheel exercise in TBI mice. J Mol Neurosci 57(1):114–122

    CAS  PubMed  Google Scholar 

  33. Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA et al (2017) Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab 37(8):2679–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Johansson S, Lee I-, Olson L, Spenger C (2005) Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain 128(12):2961–2976

    PubMed  Google Scholar 

  35. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383

    PubMed  Google Scholar 

  36. Puhakka N, Bot AM, Vuokila N, Debski KJ, Lukasiuk K, Pitkänen A (2017) Chronically dysregulated NOTCH1 interactome in the dentate gyrus after traumatic brain injury. PLoS One 12(3):e0172521

    PubMed  PubMed Central  Google Scholar 

  37. Sun D (2016) Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury. Exp Neurol 275(Pt 3):405–410. https://doi.org/10.1016/j.expneurol.2015.04.017 (Epub 2015 Apr 30)

    Article  CAS  PubMed  Google Scholar 

  38. Faden AI, Wu J, Stoica BA, Loane DJ (2016) Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 173(4):681–691. https://doi.org/10.1111/bph.13179 (Epub 2015 Jun 12)

    Article  CAS  PubMed  Google Scholar 

  39. Huusko N, Römer C, Ndode-Ekane XE, Lukasiuk K, Pitkänen A (2013) Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy. Brain Struct Funct 220(1):153–191

    PubMed  Google Scholar 

  40. McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL (1989) Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28:233–244

    CAS  PubMed  Google Scholar 

  41. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140(2):685–697

    CAS  PubMed  Google Scholar 

  42. Nissinen J, Halonen T, Koivisto E, Pitkänen A (2000) A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38(2–3):177–205

    CAS  PubMed  Google Scholar 

  43. Bot AM, Debski KJ, Lukasiuk K (2013) Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS One 8(10):e76051

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  45. Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J et al (2007) Epileptogenesis in experimental models. Epilepsia 48(SUPPL. 2):13–20

    PubMed  Google Scholar 

  46. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452

    CAS  PubMed  Google Scholar 

  47. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mootha VK, Lindgren CM, Eriksson K-, Subramanian A, Sihag S, Lehar J et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    CAS  PubMed  Google Scholar 

  50. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R et al (2016) The reactome pathway knowledgebase. Nucleic Acids Res 44(D1):D481–D487

    CAS  PubMed  Google Scholar 

  51. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42(D1):D472–D477

    CAS  PubMed  Google Scholar 

  52. Miotto E, Saccenti E, Lupini L, Callegari E, Negrini M, Ferracin M (2014) Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen- and TaqMan-based chemistries. Cancer Epidemiol Biomark Prev 23(12):2638–2642

    CAS  Google Scholar 

  53. Lewis DA, Campbell MJ, Morrison JH (1986) An immunohistochemical characterization of somatostatin-28 and somatostatin-281–12 in monkey prefrontal cortex. J Comp Neurol 248(1):1–18

    CAS  PubMed  Google Scholar 

  54. Grady MS, Charleston JS, Maris D, Witgen BM, Lifshitz J (2003) Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: analysis by stereological estimation. J Neurotrauma 20(10):929–941

    PubMed  Google Scholar 

  55. Cai B, Li J, Wang J, Luo X, Ai J, Liu Y, Wang N, Liang H, Zhang M, Chen N, Wang G, Xing S, Zhou X, Yang B, Wang X, Lu Y (2012) MicroRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling. Stem Cells 30:1746–1755

    CAS  PubMed  Google Scholar 

  56. Oliva AA, Kang Y, Sanchez-Molano J, Furones C, Atkins CM (2012) STAT3 signaling after traumatic brain injury. J Neurochem 120(5):710–720

    CAS  PubMed  Google Scholar 

  57. Raible DJ, Frey LC, Del Angel YC, Carlsen J, Hund D, Russek SJ et al (2015) JAK/STAT pathway regulation of GABAA receptor expression after differing severities of experimental TBI. Exp Neurol 271:445–456

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ et al (2008) BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal 1(41):ra9

    PubMed  PubMed Central  Google Scholar 

  59. He M, Liu Y, Wang X, Zhang MQ, Hannon GJ, Huang ZJ (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73(1):35–48. https://doi.org/10.1016/j.neuron.2011.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nesti E, Corson GM, McCleskey M, Oyer JA, Mandel G (2014) C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc Natl Acad Sci USA 111(37):E3929–E3936

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A et al (2008) SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452(7185):370–374

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mandel G, Fiondella CG, Covey MV, Lu DD, LoTurco JJ, Ballas N (2011) Repressor element 1 silencing transcription factor (REST) controls radial migration and temporal neuronal specification during neocortical development. Proc Natl Acad Sci USA 108(40):16789–16794

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aoki H, Hara A, Era T, Kunisada T, Yamada Y (2012) Genetic ablation of REST leads to in vitro-specific derepression of neuronal genes during neurogenesis. Development (Cambridge) 139(4):667–677

    CAS  Google Scholar 

  64. Kok FO, Taibi A, Wanner SJ, Xie X, Moravec CE, Love CE et al (2012) Zebrafish rest regulates developmental gene expression but not neurogenesis. Development 139(20):3838–3848

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodenas-Ruano A, Chávez AE, Cossio MJ, Castillo PE, Zukin RS (2012) REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15(10):1382–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Soldati C, Caramanica P, Burney MJ, Toselli C, Bithell A, Augusti-Tocco G et al (2015) RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro. J Neurosci Res 93(8):1203–1214

    CAS  PubMed  Google Scholar 

  67. Watanabe Y, Kameoka S, Gopalakrishnan V, Aldape KD, Pan ZZ, Lang FF et al (2004) Conversion of myoblasts to physiologically active neuronal phenotype. Genes Dev 18(8):889–900

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Su X, Kameoka S, Lentz S, Majumder S (2004) Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol Cell Biol 24(18):8018–8025

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453(7192):223–227

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McClelland S, Brennan GP, Dubé C, Rajpara S, Iyer S, Richichi C et al (2014) The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. Elife 3:e01267

    PubMed  PubMed Central  Google Scholar 

  71. Chio C, Lin H, Tian Y, Chen Y, Lin M, Lin C et al (2017) Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-ΚB/IL-6/synapsin I axis in traumatic brain injury rats. J Neuroinflamm 14(1):90

    Google Scholar 

  72. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641

    CAS  PubMed  Google Scholar 

  73. Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Belachew S, Moonen G et al (2011) Cdk6-dependent regulation of G1 length controls adult neurogenesis. Stem Cells 29(4):713–724

    CAS  PubMed  Google Scholar 

  74. Sawicka K, Bushell M, Spriggs KA, Willis AE (2008) Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36(4):641–647

    CAS  PubMed  Google Scholar 

  75. Sharma S, Falick AM, Black DL (2005) Polypyrimidine tract binding protein blocks the 5′ splice site-dependent assembly of U2AF and the prespliceosomal e complex. Mol Cell 19(4):485–496

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Markovtsov V, Nikolic JM, Goldman JA, Turck CW, Chou M, Black DL (2000) Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 20(20):7463–7479

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Polydorides AD, Okano HJ, Yang YYL, Stefani G, Darnell RB (2000) A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci USA 97(12):6350–6355

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Licatalosi DD, Yano M, Fak JJ, Mele A, Grabinski SE, Zhang C et al (2012) Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev 26(14):1626–1642

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Boutz PL, Stoilov P, Li Q, Lin C, Chawla G, Ostrow K et al (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 21(13):1636–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Spellman R, Llorian M, Smith CWJ (2007) Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 27(3):420–434

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Müller S, Chakrapani BPS, Schwegler H, Hokmann H-, Kirsch M (2009) Neurogenesis in the dentate gyrus depends on ciliary neurotrophic factor and signal transducer and activator of transcription 3 signaling. Stem Cells 27(2):431–441

    PubMed  Google Scholar 

  83. Grabenstatter HL, Del Angel YC, Carlsen J, Wempe MF, White AM, Cogswell M et al (2014) The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol Dis 62:73–85

    CAS  PubMed  Google Scholar 

  84. Kronenberg G, Gertz K, Baldinger T, Kirste I, Eckart S, Yildirim F et al (2010) Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis. J Neurosci 30(9):3419–3431

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu X, Wang C, Dai P, Xie Y, Song N, Liu Y et al (2007) Myosin X regulates netrin receptors and functions in axonal path-finding. Nat Cell Biol 9(2):184–192

    CAS  PubMed  Google Scholar 

  86. Yu H, Wang N, Ju X, Yang Y, Sun D, Lai M et al (2012) Ptdins (3,4,5) P3 recruitment of Myo10 is essential for axon development. PLoS One 7(5):e36988

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu H, Sun D, Wang N, Wang M, Lan Y, Fan W et al (2015) Headless Myo10 is a regulator of microtubule stability during neuronal development. J Neurochem 135(2):261–273

    CAS  PubMed  Google Scholar 

  88. Yu J, Chung K, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314(14):2618–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gu X, Li A, Liu S, Lin L, Xu S, Zhang P et al (2016) MicroRNA124 regulated neurite elongation by targeting OSBP. Mol Neurobiol 53(9):6388–6396

    CAS  PubMed  Google Scholar 

  90. Brenes JC, Lackinger M, Höglinger GU, Schratt G, Schwarting RKW, Wöhr M (2016) Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats. J Comp Neurol 524(8):1586–1607

    CAS  PubMed  Google Scholar 

  91. Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177(4):2651–2661

    CAS  PubMed  Google Scholar 

  92. Chu HX, Arumugam TV, Gelderblom M, Magnus T, Drummond GR, Sobey CG (2014) Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab 34(9):1425–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gyoneva S, Kim D, Katsumoto A, Kokiko-Cochran ON, Lamb BT, Ransohoff RM (2015) Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflamm 12(1):228

    Google Scholar 

  94. Buss H, Handschick K, Jurrmann N, Pekkonen P, Beuerlein K, Müller H et al (2012) Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One 7(12):e51847

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Handschick K, Beuerlein K, Jurida L, Bartkuhn M, Müller H, Soelch J et al (2014) Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression. Mol Cell 53(4):193–208

    CAS  PubMed  Google Scholar 

  96. Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott R et al (2013) A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 24(2):167–181

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Campbell IL (2005) Cytokine-mediated inflammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS. Brain Res Rev 48(2):166–177

    CAS  PubMed  Google Scholar 

  98. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264(5155):95–98

    CAS  PubMed  Google Scholar 

  99. Rummel C, Hübschle T, Gerstberger R, Roth J (2004) Nuclear translocation of the transcription factor STAT3 in the guinea pig brain during systemic or localized inflammation. J Physiol 557(2):671–687

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    CAS  PubMed  Google Scholar 

  101. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13

    PubMed  PubMed Central  Google Scholar 

  102. Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K et al (2011) Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res (Japan) 32(2):135–141

    CAS  Google Scholar 

  103. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RHA, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12(2):187–191

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brennan GP, Dey D, Chen Y, Patterson KP, Magnetta EJ, Hall AM et al (2016) Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep 14(10):2402–2412

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Suzhi Z, Liang T, Yuexia P, Lucy L, Xiaoting H, Yuan Z et al (2015) Gap junctions enhance the antiproliferative effect of microRNA-124-3p in glioblastoma cells. J Cell Physiol 230(10):2476–2488

    PubMed  Google Scholar 

  106. Lunavat TR, Cheng L, Kim D-, Bhadury J, Jang SC, Lässer C et al (2015) Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells—evidence of unique microRNA cargos. RNA Biol 12(8):810–823

    PubMed  PubMed Central  Google Scholar 

  107. Gorter JA, Iyer A, White I, Colzi A, van Vliet EA, Sisodiya S et al (2014) Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis 62:508–520

    CAS  PubMed  Google Scholar 

  108. Hu K, Zhang C, Long L, Long X, Feng L, Li Y et al (2011) Expression profile of microRNAs in rat hippocampus following lithium–pilocarpine-induced status epilepticus. Neurosci Lett 488(3):252–257

    CAS  PubMed  Google Scholar 

  109. Kochanek PM, Dixon CE, Shellington DK, Shin SS, Bayir H, Jackson EK et al (2013) Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma 30(11):920–937

    PubMed  PubMed Central  Google Scholar 

  110. Attilio PJ, Flora M, Kamnaksh A, Bradshaw DJ, Agoston D, Mueller GP (2017) The effects of blast exposure on protein deimination in the brain. Oxid Med Cell Longev. https://doi.org/10.1155/2017/8398072

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sun HT, Cheng SX, Tu Y, Li XH, Zhang S (2013) FoxQ1 promotes glioma cells proliferation and migration by regulating NRXN3 expression. PLoS One 8(1):e55693

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30

    CAS  PubMed  Google Scholar 

  113. Yuan L, Sacharidou A, Stratman AN, Le Bras A, Zwiers PJ, Spokes K et al (2011) RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood 118(4):1145–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang L, Wang T, Valle D (2015) Reduced PLP2 expression increases ER-stress-induced neuronal apoptosis and risk for adverse neurological outcomes after hypoxia ischemia injury. Hum Mol Genet 24(25):7221–7226

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang G, Nikolovska-Coleska Z, Yang C, Wang R, Tang G, Guo J et al (2006) Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J Med Chem 49(21):6139–6142

    CAS  PubMed  Google Scholar 

  116. Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M et al (2011) Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem Biol 6(7):700–708

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Görlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79(5):767–778

    PubMed  Google Scholar 

  118. Forbes DJ, Travesa A, Nord MS, Bernis C (2015) Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol 35:78–90

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jost PJ, Ruland J (2007) Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109(7):2700–2707

    CAS  PubMed  Google Scholar 

  120. Mackowiak B, Li L, Welch MA, Li D, Jones JW, Heyward S et al (2017) Molecular basis of metabolism-mediated conversion of PK11195 from an antagonist to an agonist of the constitutive androstane receptor. Mol Pharmacol 92(1):75–87

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kletsas D, Li W, Han Z, Papadopoulos V (2004) Peripheral-type benzodiazepine receptor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: role of ERK, c-Jun and ligand-activated PBR-independent pathways. Biochem Pharmacol 67(10):1927–1932

    CAS  PubMed  Google Scholar 

  122. Carmel I, Fares FA, Leschiner S, Scherübl H, Weisinger G, Gavish M (1999) Peripheral-type benzodiazepine receptors in the regulation of proliferation of MCF-7 human breast carcinoma cell line. Biochem Pharmacol 58(2):273–278

    CAS  PubMed  Google Scholar 

  123. Folkersma H, Boellaard R, Vandertop WP, Kloet RW, Lubberink M, Lammertsma AA et al (2009) Reference tissue models and blood–brain barrier disruption: lessons from (R)-[11C]PK11195 in traumatic brain injury. J Nucl Med 50(12):1975–1979

    PubMed  Google Scholar 

  124. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101(2):540–545

    CAS  PubMed  Google Scholar 

  125. Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM et al (2009) Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2:31

    PubMed  PubMed Central  Google Scholar 

  126. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM et al (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-x(L), c-Jun, and p21(CIP1), but independent of p53. Oncogene 18(50):7016–7025

    CAS  PubMed  Google Scholar 

  127. He L, Tolentino T, Grayson P, Zhong S, Warrell RP Jr, Rifkind RA et al (2001) Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Investig 108(9):1321–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Peiffer L, Poll-Wolbeck SJ, Flamme H, Gehrke I, Hallek M, Kreuzer K (2014) Trichostatin A effectively induces apoptosis in chronic lymphocytic leukemia cells via inhibition of Wnt signaling and histone deacetylation. J Cancer Res Clin Oncol 140(8):1283–1293

    CAS  PubMed  Google Scholar 

  129. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR et al (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104(49):19512–19517

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A et al (2010) Discovery of 1-(4-(4-Propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1 H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 53(19):7146–7155

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kumar S, Guru SK, Venkateswarlu V, Malik F, Vishwakarma RA, Sawant SD et al (2015) A novel quinoline based second-generation mTOR inhibitor that induces apoptosis and disrupts PI3K-Akt-mTOR signaling in human leukemia HL-60 cells. Anti Cancer Agents Med Chem 15(10):1297–1304

    CAS  Google Scholar 

  132. Yu H, Qiu Y, Pang X, Li J, Wu S, Yin S et al (2017) Lycorine promotes autophagy and apoptosis via TCRP1/Akt/mTOR axis inactivation in human hepatocellular carcinoma. Mol Cancer Ther 16(12):2711–2723

    CAS  PubMed  Google Scholar 

  133. Guo D, Zeng L, Brody DL, Wong M (2013) Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS One 8(5):e64078

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Butler CR, Boychuk JA, Smith BN (2015) Effects of rapamycin treatment on neurogenesis and synaptic reorganization in the dentate gyrus after controlled cortical impact injury in mice. Front Syst Neurosci 9:163

    PubMed  PubMed Central  Google Scholar 

  135. Kotulska K, Chmielewski D, Borkowska J, Jurkiewicz E, Kuczyński D, Kmieć T et al (2013) Long-term effect of everolimus on epilepsy and growth in children under 3 years of age treated for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Eur J Paediatr Neurol 17(5):479–485

    PubMed  Google Scholar 

  136. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R et al (2014) Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol 15(13):1513–1520

    CAS  PubMed  Google Scholar 

  137. Cardamone M, Flanagan D, Mowat D, Kennedy SE, Chopra M, Lawson JA (2014) Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex. J Pediatr 164(5):1195–1200

    CAS  PubMed  Google Scholar 

  138. Racke FK, Baird M, Barth RF, Huo T, Yang W, Gupta N, Weldon M, Rutledge H (2012) Unique in vitro and in vivo thrombopoietic activities of ingenol 3,20 dibenzoate, A Ca2+-independent protein kinase C isoform agonist. PLoS One 7(12):e51059

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Jiang H, Cheng D, Liu W, Peng J, Feng J (2010) Protein kinase C inhibits autophagy and phosphorylates LC3. Biochem Biophys Res Commun 395(4):471–476

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the Academy of Finland (AP) Grant nos. (272249, 273909), Polish National Science Centre Grants (2015/16/T/NZ4/00175 and 2014/15/N/NZ4/04561), as well as from the European Union’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement n°602102 (EPITARGET). We acknowledge the technical support generously provided by Mr. Jarmo Hartikainen, Mrs. Merja Lukkari, and Mr. Jasper Anink.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asla Pitkänen or Noora Puhakka.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuokila, N., Lukasiuk, K., Bot, A.M. et al. miR-124-3p is a chronic regulator of gene expression after brain injury. Cell. Mol. Life Sci. 75, 4557–4581 (2018). https://doi.org/10.1007/s00018-018-2911-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2911-z

Keywords

Navigation