Skip to main content

Advertisement

Log in

The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mesenchymoangioblast (MB) is the earliest precursor for endothelial and mesenchymal cells originating from APLNR+PDGFRα+KDR+ mesoderm in human pluripotent stem cell cultures. MBs are identified based on their capacity to form FGF2-dependent compact spheroid colonies in a serum-free semisolid medium. MBs colonies are composed of PDGFRβ+CD271+EMCN+DLK1+CD73 primitive mesenchymal cells which are generated through endothelial/angioblastic intermediates (cores) formed during first 3–4 days of clonogenic cultures. MB-derived primitive mesenchymal cells have potential to differentiate into mesenchymal stromal/stem cells (MSCs), pericytes, and smooth muscle cells. In this review, we summarize the specification and developmental potential of MBs, emphasize features that distinguish MBs from other mesenchymal progenitors described in the literature and discuss the value of these findings for identifying molecular pathways leading to MSC and vasculogenic cell specification, and developing cellular therapies using MB-derived progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MB:

Mesenchymoangioblast

HB:

Hemangioblast

PC:

Pericytes

SMC:

Smooth muscle cells

MSC:

Mesenchymal stem/stromal cells

hPSC:

Human pluripotent stem cells

hESC:

Human embryonic stem cells

hiPSCs:

Human-induced pluripotent stem cells

References

  1. Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II (2010) A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7(6):718–729. https://doi.org/10.1016/j.stem.2010.11.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tam PP, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68(1–2):3–25

    Article  PubMed  CAS  Google Scholar 

  3. Lawson A, Schoenwolf GC (2001) Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer. Genesis 29(4):188–195

    Article  PubMed  CAS  Google Scholar 

  4. Sadler TW (2006) Langman’s medical embryology. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  5. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233(3):706–720. https://doi.org/10.1002/dvdy.20345

    Article  PubMed  CAS  Google Scholar 

  6. Noden DM (1978) The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev Biol 67(2):296–312

    Article  PubMed  CAS  Google Scholar 

  7. Noden DM (1986) Origins and patterning of craniofacial mesenchymal tissues. J Craniofac Genet Dev Biol Suppl 2:15–31

    PubMed  CAS  Google Scholar 

  8. Mayor R, Theveneau E (2013) The neural crest. Development 140(11):2247–2251. https://doi.org/10.1242/dev.091751

    Article  PubMed  CAS  Google Scholar 

  9. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258. https://doi.org/10.1161/ATVBAHA.107.141069

    Article  PubMed  CAS  Google Scholar 

  10. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129(7):1377–1388. https://doi.org/10.1016/j.cell.2007.04.028

    Article  PubMed  CAS  Google Scholar 

  11. Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, Sanchez-Cabo F, Mendez-Ferrer S (2014) The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife 3:e03696. https://doi.org/10.7554/eLife.03696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Miller FD (2007) Riding the waves: neural and nonneural origins for mesenchymal stem cells. Cell Stem Cell 1(2):129–130. https://doi.org/10.1016/j.stem.2007.07.007

    Article  PubMed  CAS  Google Scholar 

  13. Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, Shimmura S, Nagai Y, Nakagawa T, Okano H, Matsuzaki Y (2009) Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 379(4):1114–1119. https://doi.org/10.1016/j.bbrc.2009.01.031

    Article  PubMed  CAS  Google Scholar 

  14. Rossant J, Tam PPL (2017) New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20(1):18–28. https://doi.org/10.1016/j.stem.2016.12.004

    Article  PubMed  CAS  Google Scholar 

  15. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  17. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  PubMed  CAS  Google Scholar 

  18. Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O’Sullivan JF, Grainger SJ, Kapp FG, Sun L, Christensen K, Xia Y, Florido MH, He W, Pan W, Prummer M, Warren CR, Jakob-Roetne R, Certa U, Jagasia R, Freskgard PO, Adatto I, Kling D, Huang P, Zon LI, Chaikof EL, Gerszten RE, Graf M, Iacone R, Cowan CA (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17(8):994–1003. https://doi.org/10.1038/ncb3205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Orlova VV, Drabsch Y, Freund C, Petrus-Reurer S, van den Hil FE, Muenthaisong S, Dijke PT, Mummery CL (2014) Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol 34(1):177–186. https://doi.org/10.1161/ATVBAHA.113.302598

    Article  PubMed  CAS  Google Scholar 

  20. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264

    Article  PubMed  Google Scholar 

  21. Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30(2):165–173. https://doi.org/10.1038/nbt.2107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Uenishi G, Theisen D, Lee JH, Kumar A, Raymond M, Vodyanik M, Swanson S, Stewart R, Thomson J, Slukvin I (2014) Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Rep 3(6):1073–1084. https://doi.org/10.1016/j.stemcr.2014.09.014

    Article  CAS  Google Scholar 

  23. Flamme I, Breier G, Risau W (1995) Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol 169(2):699–712. https://doi.org/10.1006/dbio.1995.1180

    Article  PubMed  CAS  Google Scholar 

  24. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91. https://doi.org/10.1146/annurev.cb.11.110195.000445

    Article  PubMed  CAS  Google Scholar 

  25. Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, Swanson S, Guo LW, Thomson JA, Slukvin II (2017) Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep 19(9):1902–1916. https://doi.org/10.1016/j.celrep.2017.05.019

    Article  PubMed  CAS  Google Scholar 

  26. Hafner AL, Contet J, Ravaud C, Yao X, Villageois P, Suknuntha K, Annab K, Peraldi P, Binetruy B, Slukvin II, Ladoux A, Dani C (2016) Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity. Sci Rep 6:32490. https://doi.org/10.1038/srep32490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  PubMed  CAS  Google Scholar 

  28. Shen EM, McCloskey KE (2017) Development of mural cells: from in vivo understanding to in vitro recapitulation. Stem Cells Dev 26(14):1020–1041. https://doi.org/10.1089/scd.2017.0020

    Article  PubMed  Google Scholar 

  29. D’Aniello C, Lonardo E, Iaconis S, Guardiola O, Liguoro AM, Liguori GL, Autiero M, Carmeliet P, Minchiotti G (2009) G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ Res 105(3):231–238. https://doi.org/10.1161/CIRCRESAHA.109.201186

    Article  PubMed  CAS  Google Scholar 

  30. Devic E, Paquereau L, Vernier P, Knibiehler B, Audigier Y (1996) Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 59(2):129–140

    Article  PubMed  CAS  Google Scholar 

  31. Zeng XX, Wilm TP, Sepich DS, Solnica-Krezel L (2007) Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell 12(3):391–402. https://doi.org/10.1016/j.devcel.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  32. Orr-Urtreger A, Bedford MT, Do MS, Eisenbach L, Lonai P (1992) Developmental expression of the alpha receptor for platelet-derived growth factor, which is deleted in the embryonic lethal Patch mutation. Development 115(1):289–303

    PubMed  CAS  Google Scholar 

  33. Sakurai H, Era T, Jakt LM, Okada M, Nakai S, Nishikawa S (2006) In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 24(3):575–586. https://doi.org/10.1634/stemcells.2005-0256

    Article  PubMed  CAS  Google Scholar 

  34. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118(2):489–498

    PubMed  CAS  Google Scholar 

  35. Choi KD, Vodyanik MA, Togarrati PP, Suknuntha K, Kumar A, Samarjeet F, Probasco MD, Tian S, Stewart R, Thomson JA, Slukvin II (2012) Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep 2(3):553–567. https://doi.org/10.1016/j.celrep.2012.08.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Slukvin II (2013) Deciphering the hierarchy of angiohematopoietic progenitors from human pluripotent stem cells. Cell Cycle 12(5):720–727. https://doi.org/10.4161/cc.23823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173(2):206–210. https://doi.org/10.1002/(SICI)1097-4652(199711)173:2<206:AID-JCP22>3.0.CO;2-C

  38. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230. https://doi.org/10.1038/nature11926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A, Pinho S, Ciero P, Nakahara F, Ma’ayan A, Bergman A, Merad M, Frenette PS (2015) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science. https://doi.org/10.1126/science.aad0084

    Article  PubMed Central  PubMed  Google Scholar 

  40. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313. https://doi.org/10.1016/j.stem.2008.07.003

    Article  PubMed  CAS  Google Scholar 

  41. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783

    PubMed  CAS  Google Scholar 

  42. Tonlorenzi R, Dellavalle A, Schnapp E, Cossu G, Sampaolesi M (2007) Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues. Curr Protoc Stem Cell Biol Chapter 2:Unit 2B 1. https://doi.org/10.1002/9780470151808.sc02b01s3

    Article  PubMed  Google Scholar 

  43. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267. https://doi.org/10.1038/ncb1542

    Article  PubMed  CAS  Google Scholar 

  44. Loperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, Nair N, Samara-Kuko E, Athanasopoulos T, Tedesco FS, Dickson G, Sampaolesi M, VandenDriessche T, Chuah MK (2016) piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res 44(2):744–760. https://doi.org/10.1093/nar/gkv1464

    Article  PubMed  CAS  Google Scholar 

  45. Iyer PS, Mavoungou LO, Ronzoni F, Zemla J, Schmid-Siegert E, Antonini S, Neff LA, Dorchies OM, Jaconi M, Lekka M, Messina G, Mermod N (2018) Autologous cell therapy approach for duchenne muscular dystrophy using piggybac transposons and mesoangioblasts. Mol Ther 26(4):1093–1108. https://doi.org/10.1016/j.ymthe.2018.01.021

    Article  PubMed  CAS  Google Scholar 

  46. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, Antonini S, Tagliafico E, Artusi V, Longa E, Tonlorenzi R, Ragazzi M, Calderazzi G, Hoshiya H, Cappellari O, Mora M, Schoser B, Schneiderat P, Oshimura M, Bottinelli R, Sampaolesi M, Torrente Y, Broccoli V, Cossu G (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra189. https://doi.org/10.1126/scitranslmed.3003541

    Article  CAS  Google Scholar 

  47. Dekel I, Magal Y, Pearson-White S, Emerson CP, Shani M (1992) Conditional conversion of ES cells to skeletal muscle by an exogenous MyoD1 gene. New Biol 4(3):217–224

    PubMed  CAS  Google Scholar 

  48. Rao L, Tang W, Wei Y, Bao L, Chen J, Chen H, He L, Lu P, Ren J, Wu L, Luan Z, Cui C, Xiao L (2012) Highly efficient derivation of skeletal myotubes from human embryonic stem cells. Stem Cell Rev 8(4):1109–1119. https://doi.org/10.1007/s12015-012-9413-4

    Article  PubMed  Google Scholar 

  49. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51(6):987–1000

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M, Yamamoto T, Nishino T, Shoji E, Sehara-Fujisawa A, Manabe Y, Fujii N, Hanaoka K, Era T, Yamashita S, Isobe K, Kimura E, Sakurai H (2013) Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS One 8(4):e61540. https://doi.org/10.1371/journal.pone.0061540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bonfanti C, Rossi G, Tedesco FS, Giannotta M, Benedetti S, Tonlorenzi R, Antonini S, Marazzi G, Dejana E, Sassoon D, Cossu G, Messina G (2015) PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nat Commun 6:6364. https://doi.org/10.1038/ncomms7364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432(7017):625–630. https://doi.org/10.1038/nature03122

    Article  PubMed  CAS  Google Scholar 

  53. Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732. https://doi.org/10.1016/j.devcel.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  54. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528. https://doi.org/10.1038/nature06894

    Article  PubMed  CAS  Google Scholar 

  55. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386(6624):488–493. https://doi.org/10.1038/386488a0

    Article  PubMed  CAS  Google Scholar 

  56. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125(4):725–732

    PubMed  CAS  Google Scholar 

  57. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457(7231):892–895. https://doi.org/10.1038/nature07679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R (2014) Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev 23(14):1611–1624. https://doi.org/10.1089/scd.2013.0554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gertow K, Hirst CE, Yu QC, Ng ES, Pereira LA, Davis RP, Stanley EG, Elefanty AG (2013) WNT3A promotes hematopoietic or mesenchymal differentiation from hESCs depending on the time of exposure. Stem Cell Rep 1(1):53–65. https://doi.org/10.1016/j.stemcr.2013.04.002

    Article  CAS  Google Scholar 

  60. Faloon P, Arentson E, Kazarov A, Deng CX, Porcher C, Orkin S, Choi K (2000) Basic fibroblast growth factor positively regulates hematopoietic development. Development 127(9):1931–1941

    PubMed  CAS  Google Scholar 

  61. Robertson SM, Kennedy M, Shannon JM, Keller G (2000) A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 127(11):2447–2459

    PubMed  CAS  Google Scholar 

  62. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240. https://doi.org/10.1016/j.stem.2010.12.008

    Article  PubMed  CAS  Google Scholar 

  63. Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G (2007) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109(7):2679–2687. https://doi.org/10.1182/blood-2006-09-047704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Slukvin II, Vodyanik M (2011) Endothelial origin of mesenchymal stem cells. Cell Cycle 10(9):1370–1373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96. https://doi.org/10.1038/35040568

    Article  PubMed  CAS  Google Scholar 

  66. Evseenko D, Zhu Y, Schenke-Layland K, Kuo J, Latour B, Ge S, Scholes J, Dravid G, Li X, MacLellan WR, Crooks GM (2010) Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 107(31):13742–13747. https://doi.org/10.1073/pnas.1002077107

    Article  PubMed  Google Scholar 

  67. Chin CJ, Cooper AR, Lill GR, Evseenko D, Zhu Y, He CB, Casero D, Pellegrini M, Kohn DB, Crooks GM (2016) Genetic tagging during human mesoderm differentiation reveals tripotent lateral plate mesodermal progenitors. Stem Cells 34(5):1239–1250. https://doi.org/10.1002/stem.2351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Peault B (2014) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 71(8):1353–1374. https://doi.org/10.1007/s00018-013-1462-6

    Article  PubMed  CAS  Google Scholar 

  69. Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54. https://doi.org/10.1038/emm.2013.94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437. https://doi.org/10.1111/trf.12421

    Article  PubMed  CAS  Google Scholar 

  71. Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, von Bonin M, Barbieri L, Halai K, Ward S, Weng L, Chakraverty R, Lombardi G, Watt FM, Orchard K, Marks DI, Apperley J, Bornhauser M, Walczak H, Bennett C, Dazzi F (2017) Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 9(416):eaam7828. https://doi.org/10.1126/scitranslmed.aam7828

    Article  PubMed  Google Scholar 

  72. Majka M, Sulkowski M, Badyra B, Musialek P (2017) Concise review: mesenchymal stem cells in cardiovascular regeneration: emerging research directions and clinical applications. Stem Cells Transl Med 6(10):1859–1867. https://doi.org/10.1002/sctm.16-0484

    Article  PubMed  Google Scholar 

  73. Munneke JM, Spruit MJA, Cornelissen AS, van Hoeven V, Voermans C, Hazenberg MD (2016) The potential of mesenchymal stromal cells as treatment for severe steroid-refractory acute graft-versus-host disease: a critical review of the literature. Transplantation 100(11):2309–2314

    Article  PubMed  CAS  Google Scholar 

  74. Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14(2):141–145. https://doi.org/10.1016/j.stem.2014.01.013

    Article  PubMed  CAS  Google Scholar 

  75. Viswanathan S, Keating A, Deans R, Hematti P, Prockop D, Stroncek DF, Stacey G, Weiss DJ, Mason C, Rao MS (2014) Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells Dev 23(11):1157–1167. https://doi.org/10.1089/scd.2013.0591

    Article  PubMed  PubMed Central  Google Scholar 

  76. Martin I, De Boer J, Sensebe L, Therapy MSCCotISfC (2016) A relativity concept in mesenchymal stromal cell manufacturing. Cytotherapy 18(5):613–620. https://doi.org/10.1016/j.jcyt.2016.02.004

    Article  PubMed  CAS  Google Scholar 

  77. Liu ST, de Castro LF, Jin P, Civini S, Ren JQ, Reems JA, Cancelas J, Nayak R, Shaw G, O’Brien T, McKenna DH, Armant M, Silberstein L, Gee AP, Hei DJ, Hematti P, Kuznetsov SA, Robey PG, Stroncek DF (2017) Manufacturing differences affect human bone marrow stromal cell characteristics and function: comparison of production methods and products from multiple centers. Sci Rep 7:46731

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chin CJ, Li S, Corselli M, Casero D, Zhu Y, He CB, Hardy R, Peault B, Crooks GM (2018) Transcriptionally and functionally distinct mesenchymal subpopulations are generated from human pluripotent stem cells. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2017.12.005

    Article  Google Scholar 

  79. Luzzani CD, Miriuka SG (2017) Pluripotent stem cells as a robust source of mesenchymal stem cells. Stem Cell Rev 13(1):68–78. https://doi.org/10.1007/s12015-016-9695-z

    Article  PubMed  CAS  Google Scholar 

  80. Xu J, Gong T, Heng BC, Zhang CF (2017) A systematic review: differentiation of stem cells into functional pericytes. FASEB J 31(5):1775–1786. https://doi.org/10.1096/fj.201600951RRR

    Article  PubMed  CAS  Google Scholar 

  81. Maguire EM, Xiao Q, Xu Q (2017) Differentiation and application of induced pluripotent stem cell-derived vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 37(11):2026–2037. https://doi.org/10.1161/ATVBAHA.117.309196

    Article  PubMed  CAS  Google Scholar 

  82. Neofytou E, O’Brien CG, Couture LA, Wu JC (2015) Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Investig 125(7):2551–2557. https://doi.org/10.1172/JCI80575

    Article  PubMed  Google Scholar 

  83. Trounson A, DeWitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17(3):194–200. https://doi.org/10.1038/nrm.2016.10

    Article  PubMed  CAS  Google Scholar 

  84. Tapia A, Salgado MS, Martin MP, Lapuerta M, Rodriguez-Fernandez J, Rossi MJ, Cabanas B (2016) Molecular characterization of the gas-particle interface of soot sampled from a diesel engine using a titration method. Environ Sci Technol 50(6):2946–2955. https://doi.org/10.1021/acs.est.5b05531

    Article  PubMed  CAS  Google Scholar 

  85. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193. https://doi.org/10.1038/nrm.2016.8

    Article  PubMed  CAS  Google Scholar 

  86. Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg Belmaker LA, Szekely A, Wilson M, Kocabas A, Calixto NE, Grigorenko EL, Huttner A, Chawarska K, Weissman S, Urban AE, Gerstein M, Vaccarino FM (2012) Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492(7429):438–442. https://doi.org/10.1038/nature11629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX, Chou BK, Zhou G, Li S, Dowey SN, Ye Z, Program NCS, Chandrasekharappa SC, Yang H, Mullikin JC, Liu PP (2012) Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10(3):337–344. https://doi.org/10.1016/j.stem.2012.01.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Young MA, Larson DE, Sun CW, George DR, Ding L, Miller CA, Lin L, Pawlik KM, Chen K, Fan X, Schmidt H, Kalicki-Veizer J, Cook LL, Swift GW, Demeter RT, Wendl MC, Sands MS, Mardis ER, Wilson RK, Townes TM, Ley TJ (2012) Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10(5):570–582. https://doi.org/10.1016/j.stem.2012.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62. https://doi.org/10.1038/nature09871

    Article  PubMed  CAS  Google Scholar 

  90. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67. https://doi.org/10.1038/nature09805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118. https://doi.org/10.1016/j.stem.2010.12.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Varela C, Denis JA, Polentes J, Feyeux M, Aubert S, Champon B, Pietu G, Peschanski M, Lefort N (2012) Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells. J Clin Investig 122(2):569–574. https://doi.org/10.1172/JCI46268

    Article  PubMed  CAS  Google Scholar 

  93. Lei Y, Schaffer DV (2013) A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci USA 110(52):E5039–E5048. https://doi.org/10.1073/pnas.1309408110

    Article  PubMed  CAS  Google Scholar 

  94. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5):675–682. https://doi.org/10.1634/stemcells.22-5-675

    Article  PubMed  CAS  Google Scholar 

  95. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. https://doi.org/10.1186/1471-2121-7-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429. https://doi.org/10.1038/nmeth.1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, Kouris NA, Yavanian GJ, Lu SJ, Pachter JS, Crocker SJ, Lanza R, Xu RH (2014) Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Rep 3(1):115–130. https://doi.org/10.1016/j.stemcr.2014.04.020

    Article  CAS  Google Scholar 

  98. Zhang Y, Liao S, Yang M, Liang X, Poon MW, Wong CY, Wang J, Zhou Z, Cheong SK, Lee CN, Tse HF, Lian Q (2012) Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension. Cell Transpl 21(10):2225–2239. https://doi.org/10.3727/096368912X653020

    Article  Google Scholar 

  99. Hao Q, Zhu YG, Monsel A, Gennai S, Lee T, Xu F, Lee JW (2015) Study of bone marrow and embryonic stem cell-derived human mesenchymal stem cells for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells Transl Med 4(7):832–840. https://doi.org/10.5966/sctm.2015-0006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zhang Y, Liang X, Liao S, Wang W, Wang J, Li X, Ding Y, Liang Y, Gao F, Yang M, Fu Q, Xu A, Chai YH, He J, Tse HF, Lian Q (2015) Potent paracrine effects of human induced pluripotent stem cell-derived mesenchymal stem cells attenuate doxorubicin-induced cardiomyopathy. Sci Rep 5:11235. https://doi.org/10.1038/srep11235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Koch JM, D’Souza SS, Schwahn DJ, Dixon I, Hacker TA (2016) Mesenchymoangioblast-derived mesenchymal stromal cells inhibit cell damage, tissue damage and improve peripheral blood flow following hindlimb ischemic injury in mice. Cytotherapy 18(2):219–228. https://doi.org/10.1016/j.jcyt.2015.10.013

    Article  PubMed  CAS  Google Scholar 

  102. Royce SG, Rele S, Broughton BRS, Kelly K, Samuel CS (2017) Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. FASEB J 31(9):4168–4178. https://doi.org/10.1096/fj.201700178R

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Matthew Raymond for editorial assistance. I.I.S. and A.K are supported by funds from the National Institute of Health (U01HL134655, U01HL099773 and P51 RR000167). I.I.S. is a founding shareholder and consultant for Cynata Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor I. Slukvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slukvin, I.I., Kumar, A. The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cell. Mol. Life Sci. 75, 3507–3520 (2018). https://doi.org/10.1007/s00018-018-2871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2871-3

Keywords

Navigation