Skip to main content

Advertisement

Log in

PAR3–PAR6–atypical PKC polarity complex proteins in neuronal polarization

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Polarity is a fundamental feature of cells. Protein complexes, including the PAR3–PAR6–aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3–PAR6–aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIS:

Axon-initial segment

AMPK:

AMP-activated protein kinase

aPKC:

Atypical protein kinase C

BDNF:

Brain-derived neurotrophic factor

CaSR:

Extracellular calcium-sensing receptor

CRIB:

CDC42/RAC interactive binding

CRMP-2:

Collapsin response mediator protein-2

DRG:

Dorsal root ganglia

DSC:

Dorsal spinal commissure

Ig:

Immunoglobulin

IZ:

Intermediate zone

JIP-1:

c-Jun N-terminal kinase interacting protein-1

KLC:

Kinesin light chain

MAPK:

Mitogen-activated protein kinase

mEPSC:

Miniature excitatory postsynaptic current

MTOC:

Microtubule organizing center

MTs:

Microtubules

Myr:

Myristoylated

NGF:

Nerve growth factor

NGL-2:

Netrin-G-ligand-2

PB1:

Phox/Bem1

PDZ:

PSD95-DLG1-ZO1

PH:

Pleckstrin homology

PI3-K:

Phosphoinositide 3-kinase

PNS:

Peripheral nervous system

PtdIns:

Phosphatidylinositol

RAL:

Ras-like

RGC:

Retinal ganglion cells

Rheb:

Ras homolog enriched in brain

SCG:

Superior cervical ganglion

SIRT-2:

Sir-two-homolog-2

SVZ:

Subventricular zone

TJ:

Tight junction

TrkA:

Tropomyosin-related kinase A

WT:

Wild type

References

  1. Guillery RW (2005) Observations of synaptic structures: origins of the neuron doctrine and its current status. Philos Trans R Soc Lond B Biol Sci 360(1458):1281–1307. https://doi.org/10.1098/rstb.2003.1459

    Article  CAS  PubMed  Google Scholar 

  2. De Carlos JA, Borrell J (2007) A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience. Brain Res Rev 55(1):8–16. https://doi.org/10.1016/j.brainresrev.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  3. Glickstein M (2006) Golgi and Cajal: the neuron doctrine and the 100th anniversary of the 1906 Nobel Prize. Curr Biol 16(5):R147–R151. https://doi.org/10.1016/j.cub.2006.02.053

    Article  CAS  PubMed  Google Scholar 

  4. Berlucchi G (1999) Some aspects of the history of the law of dynamic polarization of the neuron. From William James to Sherrington, from Cajal and van Gehuchten to Golgi. J Hist Neurosci 8(2):191–201. https://doi.org/10.1076/jhin.8.2.191.1844

    Article  CAS  PubMed  Google Scholar 

  5. Thompson BJ (2013) Cell polarity: models and mechanisms from yeast, worms and flies. Development 140(1):13–21. https://doi.org/10.1242/dev.083634

    Article  CAS  PubMed  Google Scholar 

  6. Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84(3):335–344

    Article  CAS  PubMed  Google Scholar 

  7. Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422(6933):766–774. https://doi.org/10.1038/nature01602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Macara IG, Mili S (2008) Polarity and differential inheritance—universal attributes of life? Cell 135(5):801–812. https://doi.org/10.1016/j.cell.2008.11.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ebersbach G, Jacobs-Wagner C (2007) Exploration into the spatial and temporal mechanisms of bacterial polarity. Trends Microbiol 15(3):101–108. https://doi.org/10.1016/j.tim.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  10. Bowman GR, Lyuksyutova AI, Shapiro L (2011) Bacterial polarity. Curr Opin Cell Biol 23(1):71–77. https://doi.org/10.1016/j.ceb.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  11. Shapiro L, McAdams HH, Losick R (2002) Generating and exploiting polarity in bacteria. Science 298(5600):1942–1946. https://doi.org/10.1126/science.1072163

    Article  CAS  PubMed  Google Scholar 

  12. Treuner-Lange A, Sogaard-Andersen L (2014) Regulation of cell polarity in bacteria. J Cell Biol 206(1):7–17. https://doi.org/10.1083/jcb.201403136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chiou JG, Balasubramanian MK, Lew DJ (2017) Cell polarity in yeast. Annu Rev Cell Dev Biol 33:77–101. https://doi.org/10.1146/annurev-cellbio-100616-060856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Martin SG, Arkowitz RA (2014) Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 38(2):228–253. https://doi.org/10.1111/1574-6976.12055

    Article  CAS  PubMed  Google Scholar 

  15. Drubin DG (1991) Development of cell polarity in budding yeast. Cell 65(7):1093–1096

    Article  CAS  PubMed  Google Scholar 

  16. Irazoqui JE, Lew DJ (2004) Polarity establishment in yeast. J Cell Sci 117(Pt 11):2169–2171. https://doi.org/10.1242/jcs.00953

    Article  CAS  PubMed  Google Scholar 

  17. Wedlich-Soldner R (2014) A longer life for yeast with good memory. Dev Cell 31(4):391–392. https://doi.org/10.1016/j.devcel.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Meitinger F, Khmelinskii A, Morlot S, Kurtulmus B, Palani S, Andres-Pons A, Hub B, Knop M, Charvin G, Pereira G (2014) A memory system of negative polarity cues prevents replicative aging. Cell 159(5):1056–1069. https://doi.org/10.1016/j.cell.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  19. Meitinger F, Richter H, Heisel S, Hub B, Seufert W, Pereira G (2013) A safeguard mechanism regulates Rho GTPases to coordinate cytokinesis with the establishment of cell polarity. PLoS Biol 11(2):e1001495. https://doi.org/10.1371/journal.pbio.1001495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622. https://doi.org/10.1016/j.devcel.2007.10.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. St Johnston D, Ahringer J (2010) Cell polarity in eggs and epithelia: parallels and diversity. Cell 141(5):757–774. https://doi.org/10.1016/j.cell.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  22. Motegi F, Seydoux G (2013) The PAR network: redundancy and robustness in a symmetry-breaking system. Philos Trans R Soc Lond B Biol Sci 368(1629):20130010. https://doi.org/10.1098/rstb.2013.0010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rose L, Gonczy P (2014) Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook, pp 1–43. https://doi.org/10.1895/wormbook.1.30.2

  24. Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52(3):311–320

    Article  CAS  PubMed  Google Scholar 

  25. Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D (2008) Polarity complex proteins. Biochim Biophys Acta 1778(3):614–630. https://doi.org/10.1016/j.bbamem.2007.08.029

    Article  CAS  PubMed  Google Scholar 

  26. Nagai-Tamai Y, Mizuno K, Hirose T, Suzuki A, Ohno S (2002) Regulated protein–protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 7(11):1161–1171

    Article  CAS  PubMed  Google Scholar 

  27. Hurd TW, Fan S, Liu CJ, Kweon HK, Hakansson K, Margolis B (2003) Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr Biol 13(23):2082–2090

    Article  CAS  PubMed  Google Scholar 

  28. Plant PJ, Fawcett JP, Lin DC, Holdorf AD, Binns K, Kulkarni S, Pawson T (2003) A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 5(4):301–308. https://doi.org/10.1038/ncb948

    Article  CAS  PubMed  Google Scholar 

  29. Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422(6929):326–330. https://doi.org/10.1038/nature01486

    Article  CAS  PubMed  Google Scholar 

  30. Hutterer A, Betschinger J, Petronczki M, Knoblich JA (2004) Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6(6):845–854. https://doi.org/10.1016/j.devcel.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  31. Gunaratne A, Di Guglielmo GM (2013) Par6 is phosphorylated by aPKC to facilitate EMT. Cell Adhes Migr 7(4):357–361. https://doi.org/10.4161/cam.25651

    Article  Google Scholar 

  32. Gunaratne A, Thai BL, Di Guglielmo GM (2013) Atypical protein kinase C phosphorylates Par6 and facilitates transforming growth factor beta-induced epithelial-to-mesenchymal transition. Mol Cell Biol 33(5):874–886. https://doi.org/10.1128/MCB.00837-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sotillos S, Diaz-Meco MT, Caminero E, Moscat J, Campuzano S (2004) DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. J Cell Biol 166(4):549–557. https://doi.org/10.1083/jcb.200311031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bose R, Wrana JL (2006) Regulation of Par6 by extracellular signals. Curr Opin Cell Biol 18(2):206–212

    Article  CAS  PubMed  Google Scholar 

  35. Chen YM, Wang QJ, Hu HS, Yu PC, Zhu J, Drewes G, Piwnica-Worms H, Luo ZG (2006) Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci USA 103(22):8534–8539. https://doi.org/10.1073/pnas.0509955103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14(8):736–741. https://doi.org/10.1016/j.cub.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S (2004) aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14(16):1425–1435. https://doi.org/10.1016/j.cub.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  38. Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126(3):397–442

    Article  CAS  PubMed  Google Scholar 

  39. Bartlett WP, Banker GA (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J Neurosci 4(8):1944–1953

    Article  CAS  PubMed  Google Scholar 

  40. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8(4):1454–1468

    Article  CAS  PubMed  Google Scholar 

  41. Goslin K, Banker G (1989) Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 108(4):1507–1516

    Article  CAS  PubMed  Google Scholar 

  42. Craig AM, Jareb M, Banker G (1992) Neuronal polarity. Curr Opin Neurobiol 2(5):602–606

    Article  CAS  PubMed  Google Scholar 

  43. Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310. https://doi.org/10.1146/annurev.ne.17.030194.001411

    Article  CAS  PubMed  Google Scholar 

  44. Dotti CG, Banker GA (1987) Experimentally induced alteration in the polarity of developing neurons. Nature 330(6145):254–256. https://doi.org/10.1038/330254a0

    Article  CAS  PubMed  Google Scholar 

  45. Feng W, Wu H, Chan LN, Zhang M (2007) The Par-3 NTD adopts a PB1-like structure required for Par-3 oligomerization and membrane localization. EMBO J 26(11):2786–2796. https://doi.org/10.1038/sj.emboj.7601702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zhang Y, Wang W, Chen J, Zhang K, Gao F, Gao B, Zhang S, Dong M, Besenbacher F, Gong W, Zhang M, Sun F, Feng W (2013) Structural insights into the intrinsic self-assembly of Par-3 N-terminal domain. Structure 21(6):997–1006. https://doi.org/10.1016/j.str.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  47. Mizuno K, Suzuki A, Hirose T, Kitamura K, Kutsuzawa K, Futaki M, Amano Y, Ohno S (2003) Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J Biol Chem 278(33):31240–31250. https://doi.org/10.1074/jbc.M303593200

    Article  CAS  PubMed  Google Scholar 

  48. Chen S, Chen J, Shi H, Wei M, Castaneda-Castellanos DR, Bultje RS, Pei X, Kriegstein AR, Zhang M, Shi SH (2013) Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity. Dev Cell 24(1):26–40. https://doi.org/10.1016/j.devcel.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  49. Shi SH, Jan LY, Jan YN (2003) Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112(1):63–75

    Article  CAS  PubMed  Google Scholar 

  50. Gao L, Macara IG, Joberty G (2002) Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties. Gene 294(1–2):99–107

    Article  CAS  PubMed  Google Scholar 

  51. Shi SH, Cheng T, Jan LY, Jan YN (2004) APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14(22):2025–2032. https://doi.org/10.1016/j.cub.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  52. Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K (2004) Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol 6(4):328–334. https://doi.org/10.1038/ncb1118

    Article  CAS  PubMed  Google Scholar 

  53. Hengst U, Deglincerti A, Kim HJ, Jeon NL, Jaffrey SR (2009) Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 11(8):1024–1030. https://doi.org/10.1038/ncb1916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Gao L, Macara IG (2004) Isoforms of the polarity protein par6 have distinct functions. J Biol Chem 279(40):41557–41562. https://doi.org/10.1074/jbc.M403723200

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119(Pt 6):979–987. https://doi.org/10.1242/jcs.02898

    Article  CAS  PubMed  Google Scholar 

  56. Bulgakova NA, Knust E (2009) The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 122(Pt 15):2587–2596. https://doi.org/10.1242/jcs.023648

    Article  CAS  PubMed  Google Scholar 

  57. Schwamborn JC, Puschel AW (2004) The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7(9):923–929. https://doi.org/10.1038/nn1295

    Article  CAS  PubMed  Google Scholar 

  58. Smith L, Smith JB (2002) Lack of constitutive activity of the free kinase domain of protein kinase C zeta. Dependence on transphosphorylation of the activation loop. J Biol Chem 277(48):45866–45873. https://doi.org/10.1074/jbc.M206420200

    Article  CAS  PubMed  Google Scholar 

  59. Bougie JK, Cai D, Hastings M, Farah CA, Chen S, Fan X, McCamphill PK, Glanzman DL, Sossin WS (2012) Serotonin-induced cleavage of the atypical protein kinase C Apl III in Aplysia. J Neurosci 32(42):14630–14640. https://doi.org/10.1523/JNEUROSCI.3026-11.2012

    Article  CAS  PubMed  Google Scholar 

  60. Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC (2003) Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 278(41):40305–40316. https://doi.org/10.1074/jbc.M307065200

    Article  CAS  PubMed  Google Scholar 

  61. Parker SS, Mandell EK, Hapak SM, Maskaykina IY, Kusne Y, Kim JY, Moy JK, St John PA, Wilson JM, Gothard KM, Price TJ, Ghosh S (2013) Competing molecular interactions of aPKC isoforms regulate neuronal polarity. Proc Natl Acad Sci USA 110(35):14450–14455. https://doi.org/10.1073/pnas.1301588110

    Article  PubMed Central  PubMed  Google Scholar 

  62. Wu-Zhang AX, Schramm CL, Nabavi S, Malinow R, Newton AC (2012) Cellular pharmacology of protein kinase Mzeta (PKMzeta) contrasts with its in vitro profile: implications for PKMzeta as a mediator of memory. J Biol Chem 287(16):12879–12885. https://doi.org/10.1074/jbc.M112.357244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Fujii K, Zhu G, Liu Y, Hallam J, Chen L, Herrero J, Shaw S (2004) Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc Natl Acad Sci USA 101(38):13744–13749. https://doi.org/10.1073/pnas.0401881101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Buchser WJ, Slepak TI, Gutierrez-Arenas O, Bixby JL, Lemmon VP (2010) Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology. Mol Syst Biol 6:391. https://doi.org/10.1038/msb.2010.52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. O’Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32:383–412. https://doi.org/10.1146/annurev.neuro.051508.135614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tessier-Lavigne M (2002) Wiring the brain: the logic and molecular mechanisms of axon guidance and regeneration. Harvey Lect 98:103–143

    PubMed  Google Scholar 

  67. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274(5290):1123–1133

    Article  CAS  PubMed  Google Scholar 

  68. Wolf AM, Lyuksyutova AI, Fenstermaker AG, Shafer B, Lo CG, Zou Y (2008) Phosphatidylinositol-3-kinase-atypical protein kinase C signaling is required for Wnt attraction and anterior-posterior axon guidance. J Neurosci 28(13):3456–3467. https://doi.org/10.1523/JNEUROSCI.0029-08.2008

    Article  CAS  PubMed  Google Scholar 

  69. Soloff RS, Katayama C, Lin MY, Feramisco JR, Hedrick SM (2004) Targeted deletion of protein kinase C lambda reveals a distribution of functions between the two atypical protein kinase C isoforms. J Immunol 173(5):3250–3260

    Article  CAS  PubMed  Google Scholar 

  70. Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, Noguchi S, Sasaoka T, Noda T, Ohno S (2006) Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 133(9):1735–1744. https://doi.org/10.1242/dev.02330

    Article  CAS  PubMed  Google Scholar 

  71. Ghosh S, Marquardt T, Thaler JP, Carter N, Andrews SE, Pfaff SL, Hunter T (2008) Instructive role of aPKCzeta subcellular localization in the assembly of adherens junctions in neural progenitors. Proc Natl Acad Sci USA 105(1):335–340. https://doi.org/10.1073/pnas.0705713105

    Article  PubMed  Google Scholar 

  72. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, Hattori N, Nukina N (2013) Loss of aPKClambda in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS One 8(12):e84036. https://doi.org/10.1371/journal.pone.0084036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Rolls MM, Doe CQ (2004) Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nat Neurosci 7(12):1293–1295

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Zhu J, Yang GY, Wang QJ, Qian L, Chen YM, Chen F, Tao Y, Hu HS, Wang T, Luo ZG (2007) Dishevelled promotes axon differentiation by regulating atypical protein kinase C. Nat Cell Biol 9(7):743–754. https://doi.org/10.1038/ncb1603

    Article  CAS  PubMed  Google Scholar 

  75. Consonni SV, Maurice MM, Bos JL (2014) DEP domains: structurally similar but functionally different. Nat Rev Mol Cell Biol 15(5):357–362. https://doi.org/10.1038/nrm3791

    Article  CAS  PubMed  Google Scholar 

  76. Greer YE, Fields AP, Brown AM, Rubin JS (2013) Atypical protein kinase Ciota is required for Wnt3a-dependent neurite outgrowth and binds to phosphorylated dishevelled 2. J Biol Chem 288(13):9438–9446. https://doi.org/10.1074/jbc.M112.448282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421(6924):753–756. https://doi.org/10.1038/nature01423

    Article  CAS  PubMed  Google Scholar 

  78. Ciani L, Salinas PC (2007) c-Jun N-terminal kinase (JNK) cooperates with Gsk3beta to regulate Dishevelled-mediated microtubule stability. BMC Cell Biol 8:27. https://doi.org/10.1186/1471-2121-8-27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Vohra BP, Fu M, Heuckeroth RO (2007) Protein kinase Czeta and glycogen synthase kinase-3beta control neuronal polarity in developing rodent enteric neurons, whereas SMAD specific E3 ubiquitin protein ligase 1 promotes neurite growth but does not influence polarity. J Neurosci 27(35):9458–9468. https://doi.org/10.1523/JNEUROSCI.0870-07.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Diez H, Garrido JJ, Wandosell F (2012) Specific roles of Akt iso forms in apoptosis and axon growth regulation in neurons. PLoS One 7(4):e32715. https://doi.org/10.1371/journal.pone.0032715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Dajas-Bailador F, Jones EV, Whitmarsh AJ (2008) The JIP1 scaffold protein regulates axonal development in cortical neurons. Curr Biol 18(3):221–226. https://doi.org/10.1016/j.cub.2008.01.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Dajas-Bailador F, Bantounas I, Jones EV, Whitmarsh AJ (2014) Regulation of axon growth by the JIP1–AKT axis. J Cell Sci 127(Pt 1):230–239. https://doi.org/10.1242/jcs.137208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Yoshimura T, Arimura N, Kawano Y, Kawabata S, Wang S, Kaibuchi K (2006) Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway. Biochem Biophys Res Commun 340(1):62–68. https://doi.org/10.1016/j.bbrc.2005.11.147

    Article  CAS  PubMed  Google Scholar 

  84. Jiang H, Guo W, Liang X, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120(1):123–135. https://doi.org/10.1016/j.cell.2004.12.033

    Article  CAS  PubMed  Google Scholar 

  85. Gartner A, Huang X, Hall A (2006) Neuronal polarity is regulated by glycogen synthase kinase-3 (GSK-3beta) independently of Akt/PKB serine phosphorylation. J Cell Sci 119(Pt 19):3927–3934. https://doi.org/10.1242/jcs.03159

    Article  CAS  PubMed  Google Scholar 

  86. Lucas FR, Salinas PC (1997) WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Dev Biol 192(1):31–44. https://doi.org/10.1006/dbio.1997.8734

    Article  CAS  PubMed  Google Scholar 

  87. Goold RG, Owen R, Gordon-Weeks PR (1999) Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones. J Cell Sci 112(Pt 19):3373–3384

    CAS  PubMed  Google Scholar 

  88. Goold RG, Gordon-Weeks PR (2005) The MAP kinase pathway is upstream of the activation of GSK3beta that enables it to phosphorylate MAP1B and contributes to the stimulation of axon growth. Mol Cell Neurosci 28(3):524–534. https://doi.org/10.1016/j.mcn.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  89. Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC (1998) Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 111(Pt 10):1351–1361

    CAS  PubMed  Google Scholar 

  90. Leroy K, Brion JP (1999) Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat 16(4):279–293

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G, Duncan JA 3rd, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MG, Barres BA (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53. https://doi.org/10.1016/j.neuron.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Wood-Kaczmar A, Kraus M, Ishiguro K, Philpott KL, Gordon-Weeks PR (2009) An alternatively spliced form of glycogen synthase kinase-3beta is targeted to growing neurites and growth cones. Mol Cell Neurosci 42(3):184–194. https://doi.org/10.1016/j.mcn.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  94. Castano Z, Gordon-Weeks PR, Kypta RM (2010) The neuron-specific isoform of glycogen synthase kinase-3beta is required for axon growth. J Neurochem 113(1):117–130. https://doi.org/10.1111/j.1471-4159.2010.06581.x

    Article  PubMed  Google Scholar 

  95. Goold RG, Gordon-Weeks PR (2004) Glycogen synthase kinase 3beta and the regulation of axon growth. Biochem Soc Trans 32(Pt 5):809–811. https://doi.org/10.1042/BST0320809

    Article  CAS  PubMed  Google Scholar 

  96. Goold RG, Gordon-Weeks PR (2003) NGF activates the phosphorylation of MAP1B by GSK3beta through the TrkA receptor and not the p75(NTR) receptor. J Neurochem 87(4):935–946

    Article  CAS  PubMed  Google Scholar 

  97. Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42(6):897–912. https://doi.org/10.1016/j.neuron.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  98. Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4(8):781–782. https://doi.org/10.1038/90476

    Article  CAS  PubMed  Google Scholar 

  99. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149. https://doi.org/10.1016/j.cell.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  100. Kawano Y, Yoshimura T, Tsuboi D, Kawabata S, Kaneko-Kawano T, Shirataki H, Takenawa T, Kaibuchi K (2005) CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol Cell Biol 25(22):9920–9935. https://doi.org/10.1128/MCB.25.22.9920-9935.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13(3):195–203. https://doi.org/10.1038/nrm3290

    Article  CAS  PubMed  Google Scholar 

  102. Zurashvili T, Cordon-Barris L, Ruiz-Babot G, Zhou X, Lizcano JM, Gomez N, Gimenez-Llort L, Bayascas JR (2013) Interaction of PDK1 with phosphoinositides is essential for neuronal differentiation but dispensable for neuronal survival. Mol Cell Biol 33(5):1027–1040. https://doi.org/10.1128/MCB.01052-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man HY (2011) AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science 332(6026):247–251. https://doi.org/10.1126/science.1201678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Menager C, Arimura N, Fukata Y, Kaibuchi K (2004) PIP3 is involved in neuronal polarization and axon formation. J Neurochem 89(1):109–118. https://doi.org/10.1046/j.1471-4159.2004.02302.x

    Article  CAS  PubMed  Google Scholar 

  105. Markus A, Zhong J, Snider WD (2002) Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35(1):65–76

    Article  CAS  PubMed  Google Scholar 

  106. Xia B, Liu H, Xie J, Wu R, Li Y (2015) Akt enhances nerve growth factor-induced axon growth via activating the Nrf2/ARE pathway. Int J Mol Med 36(5):1426–1432. https://doi.org/10.3892/ijmm.2015.2329

    Article  CAS  PubMed  Google Scholar 

  107. Guo X, Snider WD, Chen B (2016) GSK3beta regulates AKT-induced central nervous system axon regeneration via an eIF2Bepsilon-dependent, mTORC1-independent pathway. Elife 5:e11903. https://doi.org/10.7554/eLife.11903

    Article  PubMed Central  PubMed  Google Scholar 

  108. Kusne Y, Carrera-Silva EA, Perry AS, Rushing EJ, Mandell EK, Dietrich JD, Errasti AE, Gibbs D, Berens ME, Loftus JC, Hulme C, Yang W, Lu Z, Aldape K, Sanai N, Rothlin CV, Ghosh S (2014) Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFalpha in glioblastoma. Sci Signal 7(338):ra75. https://doi.org/10.1126/scisignal.2005196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Siddle K (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 47(1):R1–R10. https://doi.org/10.1530/JME-11-0022

    Article  CAS  PubMed  Google Scholar 

  110. Farese RV, Sajan MP, Standaert ML (2005) Atypical protein kinase C in insulin action and insulin resistance. Biochem Soc Trans 33(Pt 2):350–353. https://doi.org/10.1042/BST0330350

    Article  CAS  PubMed  Google Scholar 

  111. Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Caceres A, Pfenninger KH, Quiroga S (2006) IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci 9(8):993–995. https://doi.org/10.1038/nn1742

    Article  CAS  PubMed  Google Scholar 

  112. Funahashi Y, Namba T, Fujisue S, Itoh N, Nakamuta S, Kato K, Shimada A, Xu C, Shan W, Nishioka T, Kaibuchi K (2013) ERK2-mediated phosphorylation of Par3 regulates neuronal polarization. J Neurosci 33(33):13270–13285. https://doi.org/10.1523/JNEUROSCI.4210-12.2013

    Article  CAS  PubMed  Google Scholar 

  113. Vizard TN, Newton M, Howard L, Wyatt S, Davies AM (2015) ERK signaling mediates CaSR-promoted axon growth. Neurosci Lett 603:77–83. https://doi.org/10.1016/j.neulet.2015.07.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Shinoda T, Taya S, Tsuboi D, Hikita T, Matsuzawa R, Kuroda S, Iwamatsu A, Kaibuchi K (2007) DISC1 regulates neurotrophin-induced axon elongation via interaction with Grb2. J Neurosci 27(1):4–14. https://doi.org/10.1523/JNEUROSCI.3825-06.2007

    Article  CAS  PubMed  Google Scholar 

  115. Xing L, Larsen RS, Bjorklund GR, Li X, Wu Y, Philpot BD, Snider WD, Newbern JM (2016) Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. Elife. https://doi.org/10.7554/eLife.11123

    Article  PubMed Central  PubMed  Google Scholar 

  116. Coffey ET, Hongisto V, Dickens M, Davis RJ, Courtney MJ (2000) Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci 20(20):7602–7613

    Article  CAS  PubMed  Google Scholar 

  117. Oliva AA Jr, Atkins CM, Copenagle L, Banker GA (2006) Activated c-Jun N-terminal kinase is required for axon formation. J Neurosci 26(37):9462–9470. https://doi.org/10.1523/JNEUROSCI.2625-06.2006

    Article  CAS  PubMed  Google Scholar 

  118. Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD (2010) TGF-beta signaling specifies axons during brain development. Cell 142(1):144–157. https://doi.org/10.1016/j.cell.2010.06.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61(1):157–170

    Article  CAS  PubMed  Google Scholar 

  120. Felsenfeld DP, Hynes MA, Skoler KM, Furley AJ, Jessell TM (1994) TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an L1-like molecule and beta 1 integrins. Neuron 12(3):675–690

    Article  CAS  PubMed  Google Scholar 

  121. Denaxa M, Chan CH, Schachner M, Parnavelas JG, Karagogeos D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128(22):4635–4644

    CAS  PubMed  Google Scholar 

  122. Denaxa M, Kyriakopoulou K, Theodorakis K, Trichas G, Vidaki M, Takeda Y, Watanabe K, Karagogeos D (2005) The adhesion molecule TAG-1 is required for proper migration of the superficial migratory stream in the medulla but not of cortical interneurons. Dev Biol 288(1):87–99. https://doi.org/10.1016/j.ydbio.2005.09.021

    Article  CAS  PubMed  Google Scholar 

  123. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609. https://doi.org/10.1126/science.1105718

    Article  CAS  PubMed  Google Scholar 

  124. Carrella S, Barbato S, D’Agostino Y, Salierno FG, Manfredi A, Banfi S, Conte I (2015) TGF-beta controls miR-181/ERK regulatory network during retinal axon specification and growth. PLoS One 10(12):e0144129. https://doi.org/10.1371/journal.pone.0144129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Carrella S, D’Agostino Y, Barbato S, Huber-Reggi SP, Salierno FG, Manfredi A, Neuhauss SC, Banfi S, Conte I (2015) miR-181a/b control the assembly of visual circuitry by regulating retinal axon specification and growth. Dev Neurobiol 75(11):1252–1267. https://doi.org/10.1002/dneu.22282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Matenia D, Mandelkow EM (2009) The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 34(7):332–342. https://doi.org/10.1016/j.tibs.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  127. Reiner O, Sapir T (2014) Mark/Par-1 marking the polarity of migrating neurons. Adv Exp Med Biol 800:97–111. https://doi.org/10.1007/978-94-007-7687-6_6

    Article  CAS  PubMed  Google Scholar 

  128. Yoshimura Y, Terabayashi T, Miki H (2010) Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation. Mol Cell Biol 30(9):2206–2219. https://doi.org/10.1128/MCB.01181-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Timm T, von Kries JP, Li X, Zempel H, Mandelkow E, Mandelkow EM (2011) Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential. J Biol Chem 286(48):41711–41722. https://doi.org/10.1074/jbc.M111.257865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Watkins JL, Lewandowski KT, Meek SE, Storz P, Toker A, Piwnica-Worms H (2008) Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association. Proc Natl Acad Sci USA 105(47):18378–18383. https://doi.org/10.1073/pnas.0809661105

    Article  PubMed Central  PubMed  Google Scholar 

  131. Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23(4):833–843. https://doi.org/10.1038/sj.emboj.7600110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN, Sanes JR, Polleux F (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129(3):549–563. https://doi.org/10.1016/j.cell.2007.03.025

    Article  CAS  PubMed  Google Scholar 

  133. Veleva-Rotse BO, Smart JL, Baas AF, Edmonds B, Zhao ZM, Brown A, Klug LR, Hansen K, Reilly G, Gardner AP, Subbiah K, Gaucher EA, Clevers H, Barnes AP (2014) STRAD pseudokinases regulate axogenesis and LKB1 stability. Neural Dev 9:5. https://doi.org/10.1186/1749-8104-9-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH (2009) Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol 29(13):3582–3596. https://doi.org/10.1128/MCB.01417-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Zhu H, Moriasi CM, Zhang M, Zhao Y, Zou MH (2013) Phosphorylation of serine 399 in LKB1 protein short form by protein kinase Czeta is required for its nucleocytoplasmic transport and consequent AMP-activated protein kinase (AMPK) activation. J Biol Chem 288(23):16495–16505. https://doi.org/10.1074/jbc.M112.443580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Kim JS, Hung W, Zhen M (2010) The long and the short of SAD-1 kinase. Commun Integr Biol 3(3):251–255

    Article  PubMed Central  PubMed  Google Scholar 

  137. Crump JG, Zhen M, Jin Y, Bargmann CI (2001) The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29(1):115–129

    Article  CAS  PubMed  Google Scholar 

  138. Kishi M, Pan YA, Crump JG, Sanes JR (2005) Mammalian SAD kinases are required for neuronal polarization. Science 307(5711):929–932. https://doi.org/10.1126/science.1107403

    Article  CAS  PubMed  Google Scholar 

  139. Lilley BN, Krishnaswamy A, Wang Z, Kishi M, Frank E, Sanes JR (2014) SAD kinases control the maturation of nerve terminals in the mammalian peripheral and central nervous systems. Proc Natl Acad Sci USA 111(3):1138–1143. https://doi.org/10.1073/pnas.1321990111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Williams T, Courchet J, Viollet B, Brenman JE, Polleux F (2011) AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci USA 108(14):5849–5854. https://doi.org/10.1073/pnas.1013660108

    Article  PubMed Central  PubMed  Google Scholar 

  141. Amato S, Man HY (2011) AMPK links cellular bioenergy status to the decision making of axon initiation in neurons. Cell Logist 1(3):103–105. https://doi.org/10.4161/cl.1.3.16815

    Article  PubMed Central  PubMed  Google Scholar 

  142. Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, He X (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22(18):2485–2495. https://doi.org/10.1101/gad.1685008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A, Sahin M, Jensen FE, Kwiatkowski DJ (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27(21):5546–5558. https://doi.org/10.1523/JNEUROSCI.5540-06.2007

    Article  CAS  PubMed  Google Scholar 

  144. Yang R, Kong E, Jin J, Hergovich A, Puschel AW (2014) Rassf5 and Ndr kinases regulate neuronal polarity through Par3 phosphorylation in a novel pathway. J Cell Sci 127(Pt 16):3463–3476. https://doi.org/10.1242/jcs.146696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Matsuki T, Matthews RT, Cooper JA, van der Brug MP, Cookson MR, Hardy JA, Olson EC, Howell BW (2010) Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 143(5):826–836. https://doi.org/10.1016/j.cell.2010.10.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Feldner A, Adam MG, Tetzlaff F, Moll I, Komljenovic D, Sahm F, Bauerle T, Ishikawa H, Schroten H, Korff T, Hofmann I, Wolburg H, von Deimling A, Fischer A (2017) Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. https://doi.org/10.15252/emmm.201606430

    Article  PubMed Central  PubMed  Google Scholar 

  147. Pichaud F, Desplan C (2002) Cell biology: a new view of photoreceptors. Nature 416(6877):139–140. https://doi.org/10.1038/416139a

    Article  CAS  PubMed  Google Scholar 

  148. Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53(2):217–240

    Article  CAS  PubMed  Google Scholar 

  149. Zolessi FR, Poggi L, Wilkinson CJ, Chien CB, Harris WA (2006) Polarization and orientation of retinal ganglion cells in vivo. Neural Dev 1:2. https://doi.org/10.1186/1749-8104-1-2

    Article  PubMed Central  PubMed  Google Scholar 

  150. Randlett O, Norden C, Harris WA (2011) The vertebrate retina: a model for neuronal polarization in vivo. Dev Neurobiol 71(6):567–583. https://doi.org/10.1002/dneu.20841

    Article  PubMed  Google Scholar 

  151. Randlett O, Poggi L, Zolessi FR, Harris WA (2011) The oriented emergence of axons from retinal ganglion cells is directed by laminin contact in vivo. Neuron 70(2):266–280. https://doi.org/10.1016/j.neuron.2011.03.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381. https://doi.org/10.1146/annurev.neuro.31.060407.125536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K (2015) Extracellular and intracellular signaling for neuronal polarity. Physiol Rev 95(3):995–1024. https://doi.org/10.1152/physrev.00025.2014

    Article  CAS  PubMed  Google Scholar 

  154. Hong Y, Ackerman L, Jan LY, Jan YN (2003) Distinct roles of Bazooka and Stardust in the specification of Drosophila photoreceptor membrane architecture. Proc Natl Acad Sci USA 100(22):12712–12717. https://doi.org/10.1073/pnas.2135347100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Longley RL Jr, Ready DF (1995) Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol 171(2):415–433. https://doi.org/10.1006/dbio.1995.1292

    Article  CAS  PubMed  Google Scholar 

  156. Robertson F, Pinal N, Fichelson P, Pichaud F (2012) Atonal and EGFR signalling orchestrate rok- and Drak-dependent adherens junction remodelling during ommatidia morphogenesis. Development 139(18):3432–3441. https://doi.org/10.1242/dev.080762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113(3):841–850

    CAS  PubMed  Google Scholar 

  158. Coopman P, Djiane A (2016) Adherens Junction and E-Cadherin complex regulation by epithelial polarity. Cell Mol Life Sci 73(18):3535–3553. https://doi.org/10.1007/s00018-016-2260-8

    Article  CAS  PubMed  Google Scholar 

  159. Izaddoost S, Nam SC, Bhat MA, Bellen HJ, Choi KW (2002) Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416(6877):178–183. https://doi.org/10.1038/nature720

    Article  CAS  PubMed  Google Scholar 

  160. Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ, Ready DF, Tepass U (2002) Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416(6877):143–149. https://doi.org/10.1038/nature721

    Article  CAS  PubMed  Google Scholar 

  161. Nam SC, Choi KW (2003) Interaction of Par-6 and Crumbs complexes is essential for photoreceptor morphogenesis in Drosophila. Development 130(18):4363–4372

    Article  CAS  PubMed  Google Scholar 

  162. Walther RF, Pichaud F (2010) Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol 20(12):1065–1074. https://doi.org/10.1016/j.cub.2010.04.049

    Article  CAS  PubMed  Google Scholar 

  163. Bachmann A, Schneider M, Theilenberg E, Grawe F, Knust E (2001) Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414(6864):638–643. https://doi.org/10.1038/414638a

    Article  CAS  PubMed  Google Scholar 

  164. Hong Y, Stronach B, Perrimon N, Jan LY, Jan YN (2001) Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414(6864):634–638. https://doi.org/10.1038/414634a

    Article  CAS  PubMed  Google Scholar 

  165. Nam SC, Choi KW (2006) Domain-specific early and late function of Dpatj in Drosophila photoreceptor cells. Dev Dyn 235(6):1501–1507. https://doi.org/10.1002/dvdy.20726

    Article  CAS  PubMed  Google Scholar 

  166. Richard M, Grawe F, Knust E (2006) DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in the Drosophila eye. Dev Dyn 235(4):895–907. https://doi.org/10.1002/dvdy.20595

    Article  CAS  PubMed  Google Scholar 

  167. van de Pavert SA, Kantardzhieva A, Malysheva A, Meuleman J, Versteeg I, Levelt C, Klooster J, Geiger S, Seeliger MW, Rashbass P, Le Bivic A, Wijnholds J (2004) Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 117(Pt 18):4169–4177. https://doi.org/10.1242/jcs.01301

    Article  CAS  PubMed  Google Scholar 

  168. Lee CY, Robinson KJ, Doe CQ (2006) Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439(7076):594–598. https://doi.org/10.1038/nature04299

    Article  CAS  PubMed  Google Scholar 

  169. Zhu J, Shang Y, Wan Q, Xia Y, Chen J, Du Q, Zhang M (2014) Phosphorylation-dependent interaction between tumor suppressors Dlg and Lgl. Cell Res 24(4):451–463. https://doi.org/10.1038/cr.2014.16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Albertson R, Chabu C, Sheehan A, Doe CQ (2004) Scribble protein domain mapping reveals a multistep localization mechanism and domains necessary for establishing cortical polarity. J Cell Sci 117(Pt 25):6061–6070. https://doi.org/10.1242/jcs.01525

    Article  CAS  PubMed  Google Scholar 

  171. Zeitler J, Hsu CP, Dionne H, Bilder D (2004) Domains controlling cell polarity and proliferation in the Drosophila tumor suppressor Scribble. J Cell Biol 167(6):1137–1146. https://doi.org/10.1083/jcb.200407158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Elsum I, Yates L, Humbert PO, Richardson HE (2012) The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 53:141–168. https://doi.org/10.1042/bse0530141

    Article  CAS  PubMed  Google Scholar 

  173. Boeda B, Etienne-Manneville S (2015) Spectrin binding motifs regulate Scribble cortical dynamics and polarity function. Elife. https://doi.org/10.7554/eLife.04726

    Article  PubMed Central  PubMed  Google Scholar 

  174. Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lecine P, Bellaiche Y, Dupont JL, Premont RT, Sempere C, Strub JM, Van Dorsselaer A, Vitale N, Borg JP (2004) Mammalian Scribble forms a tight complex with the betaPIX exchange factor. Curr Biol 14(11):987–995. https://doi.org/10.1016/j.cub.2004.05.051

    Article  CAS  PubMed  Google Scholar 

  175. Sun SD, Purdy AM, Walsh GS (2016) Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance. BMC Neurosci 17(1):83. https://doi.org/10.1186/s12868-016-0318-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Sun Y, Aiga M, Yoshida E, Humbert PO, Bamji SX (2009) Scribble interacts with beta-catenin to localize synaptic vesicles to synapses. Mol Biol Cell 20(14):3390–3400. https://doi.org/10.1091/mbc.E08-12-1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18(5):559–571. https://doi.org/10.1101/gad.1178004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Hattendorf DA, Andreeva A, Gangar A, Brennwald PJ, Weis WI (2007) Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism. Nature 446(7135):567–571. https://doi.org/10.1038/nature05635

    Article  CAS  PubMed  Google Scholar 

  179. Dong W, Zhang X, Liu W, Chen YJ, Huang J, Austin E, Celotto AM, Jiang WZ, Palladino MJ, Jiang Y, Hammond GR, Hong Y (2015) A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia. J Cell Biol 211(2):273–286. https://doi.org/10.1083/jcb.201503067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Wang T, Liu Y, Xu XH, Deng CY, Wu KY, Zhu J, Fu XQ, He M, Luo ZG (2011) Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Dev Cell 21(3):431–444. https://doi.org/10.1016/j.devcel.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  181. Choi KW, Nam SC, Mukhopadhyay B (2007) Par-1 and PP2A: Yin-Yang of Bazooka localization. Fly (Austin) 1(4):235–237

    Article  Google Scholar 

  182. Iden S, Misselwitz S, Peddibhotla SS, Tuncay H, Rehder D, Gerke V, Robenek H, Suzuki A, Ebnet K (2012) aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation. J Cell Biol 196(5):623–639. https://doi.org/10.1083/jcb.201104143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL 3rd, Sontag E (2002) Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 158(5):967–978. https://doi.org/10.1083/jcb.200206114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Ogawa H, Ohta N, Moon W, Matsuzaki F (2009) Protein phosphatase 2A negatively regulates aPKC signaling by modulating phosphorylation of Par-6 in Drosophila neuroblast asymmetric divisions. J Cell Sci 122(Pt 18):3242–3249. https://doi.org/10.1242/jcs.050955

    Article  CAS  PubMed  Google Scholar 

  185. Zhang P, Wang S, Wang S, Qiao J, Zhang L, Zhang Z, Chen Z (2016) Dual function of partitioning-defective 3 in the regulation of YAP phosphorylation and activation. Cell Discov 2:16021. https://doi.org/10.1038/celldisc.2016.21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Poon CL, Mitchell KA, Kondo S, Cheng LY, Harvey KF (2016) The Hippo pathway regulates neuroblasts and brain size in Drosophila melanogaster. Curr Biol 26(8):1034–1042. https://doi.org/10.1016/j.cub.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  187. Kawamori H, Tai M, Sato M, Yasugi T, Tabata T (2011) Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev Growth Differ 53(5):653–667. https://doi.org/10.1111/j.1440-169X.2011.01279.x

    Article  CAS  PubMed  Google Scholar 

  188. Emoto K (2011) The growing role of the Hippo–NDR kinase signalling in neuronal development and disease. J Biochem 150(2):133–141. https://doi.org/10.1093/jb/mvr080

    Article  CAS  PubMed  Google Scholar 

  189. Kwan J, Sczaniecka A, Heidary Arash E, Nguyen L, Chen CC, Ratkovic S, Klezovitch O, Attisano L, McNeill H, Emili A, Vasioukhin V (2016) DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 30(24):2696–2709. https://doi.org/10.1101/gad.284539.116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, Colwill K, Starostine A, Metalnikov P, Pawson T (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125(3):535–548. https://doi.org/10.1016/j.cell.2006.02.045

    Article  CAS  PubMed  Google Scholar 

  191. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25(1):51–63. https://doi.org/10.1101/gad.2000111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Wigerius M, Quinn D, Diab A, Clattenburg L, Kolar A, Qi J, Krueger SR, Fawcett JP (2018) The polarity protein Angiomotin p130 controls dendritic spine maturation. J Cell Biol 217(2):715–730. https://doi.org/10.1083/jcb.201705184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Traweger A, Wiggin G, Taylor L, Tate SA, Metalnikov P, Pawson T (2008) Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3. Proc Natl Acad Sci USA 105(30):10402–10407. https://doi.org/10.1073/pnas.0804102105

    Article  PubMed Central  PubMed  Google Scholar 

  194. Lyu J, Kim HR, Yamamoto V, Choi SH, Wei Z, Joo CK, Lu W (2013) Protein phosphatase 4 and Smek complex negatively regulate Par3 and promote neuronal differentiation of neural stem/progenitor cells. Cell Rep 5(3):593–600. https://doi.org/10.1016/j.celrep.2013.09.034

    Article  CAS  PubMed  Google Scholar 

  195. Hernandez F, Langa E, Cuadros R, Avila J, Villanueva N (2010) Regulation of GSK3 isoforms by phosphatases PP1 and PP2A. Mol Cell Biochem 344(1–2):211–215. https://doi.org/10.1007/s11010-010-0544-0

    Article  CAS  PubMed  Google Scholar 

  196. Joseph BK, Liu HY, Francisco J, Pandya D, Donigan M, Gallo-Ebert C, Giordano C, Bata A, Nickels JT Jr (2015) Inhibition of AMP kinase by the protein phosphatase 2A heterotrimer, PP2APpp2r2d. J Biol Chem 290(17):10588–10598. https://doi.org/10.1074/jbc.M114.626259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Diaz-Meco MT, Lozano J, Municio MM, Berra E, Frutos S, Sanz L, Moscat J (1994) Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zeta. J Biol Chem 269(50):31706–31710

    CAS  PubMed  Google Scholar 

  198. Uberall F, Hellbert K, Kampfer S, Maly K, Villunger A, Spitaler M, Mwanjewe J, Baier-Bitterlich G, Baier G, Grunicke HH (1999) Evidence that atypical protein kinase C-lambda and atypical protein kinase C-zeta participate in Ras-mediated reorganization of the F-actin cytoskeleton. J Cell Biol 144(3):413–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Choi W, Harris NJ, Sumigray KD, Peifer M (2013) Rap1 and Canoe/afadin are essential for establishment of apical-basal polarity in the Drosophila embryo. Mol Biol Cell 24(7):945–963. https://doi.org/10.1091/mbc.E12-10-0736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Fu Z, Lee SH, Simonetta A, Hansen J, Sheng M, Pak DT (2007) Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. J Neurochem 100(1):118–131. https://doi.org/10.1111/j.1471-4159.2006.04195.x

    Article  CAS  PubMed  Google Scholar 

  201. Tawa H, Rikitake Y, Takahashi M, Amano H, Miyata M, Satomi-Kobayashi S, Kinugasa M, Nagamatsu Y, Majima T, Ogita H, Miyoshi J, Hirata K, Takai Y (2010) Role of afadin in vascular endothelial growth factor- and sphingosine 1-phosphate-induced angiogenesis. Circ Res 106(11):1731–1742. https://doi.org/10.1161/CIRCRESAHA.110.216747

    Article  CAS  PubMed  Google Scholar 

  202. Birukova AA, Fu P, Wu T, Dubrovskyi O, Sarich N, Poroyko V, Birukov KG (2012) Afadin controls p120-catenin-ZO-1 interactions leading to endothelial barrier enhancement by oxidized phospholipids. J Cell Physiol 227(5):1883–1890. https://doi.org/10.1002/jcp.22916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. Beaudoin GM 3rd, Schofield CM, Nuwal T, Zang K, Ullian EM, Huang B, Reichardt LF (2012) Afadin, a Ras/Rap effector that controls cadherin function, promotes spine and excitatory synapse density in the hippocampus. J Neurosci 32(1):99–110. https://doi.org/10.1523/JNEUROSCI.4565-11.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Miyata M, Maruo T, Kaito A, Wang S, Yamamoto H, Fujiwara T, Mizoguchi A, Mandai K, Takai Y (2016) Roles of afadin in the formation of the cellular architecture of the mouse hippocampus and dentate gyrus. Mol Cell Neurosci 79:34–44. https://doi.org/10.1016/j.mcn.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  205. Toyoshima D, Mandai K, Maruo T, Supriyanto I, Togashi H, Inoue T, Mori M, Takai Y (2014) Afadin regulates puncta adherentia junction formation and presynaptic differentiation in hippocampal neurons. PLoS One 9(2):e89763. https://doi.org/10.1371/journal.pone.0089763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116(Pt 1):17–27

    Article  CAS  PubMed  Google Scholar 

  207. Iwasawa N, Negishi M, Oinuma I (2012) R-Ras controls axon branching through afadin in cortical neurons. Mol Biol Cell 23(14):2793–2804. https://doi.org/10.1091/mbc.E12-02-0103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. Oinuma I, Katoh H, Negishi M (2007) R-Ras controls axon specification upstream of glycogen synthase kinase-3beta through integrin-linked kinase. J Biol Chem 282(1):303–318. https://doi.org/10.1074/jbc.M607979200

    Article  CAS  PubMed  Google Scholar 

  209. Lalli G (2009) RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC. J Cell Sci 122(Pt 10):1499–1506. https://doi.org/10.1242/jcs.044339

    Article  CAS  PubMed  Google Scholar 

  210. Lalli G, Hall A (2005) Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J Cell Biol 171(5):857–869. https://doi.org/10.1083/jcb.200507061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Rudolph JL, Shi GX, Erdogan E, Fields AP, Andres DA (2007) Rit mutants confirm role of MEK/ERK signaling in neuronal differentiation and reveal novel Par6 interaction. Biochim Biophys Acta 1773(12):1793–1800. https://doi.org/10.1016/j.bbamcr.2007.09.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Hoshino M, Yoshimori T, Nakamura S (2005) Small GTPase proteins Rin and Rit Bind to PAR6 GTP-dependently and regulate cell transformation. J Biol Chem 280(24):22868–22874. https://doi.org/10.1074/jbc.M411592200

    Article  CAS  PubMed  Google Scholar 

  213. Lein PJ, Guo X, Shi GX, Moholt-Siebert M, Bruun D, Andres DA (2007) The novel GTPase Rit differentially regulates axonal and dendritic growth. J Neurosci 27(17):4725–4736. https://doi.org/10.1523/JNEUROSCI.5633-06.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Threadgill R, Bobb K, Ghosh A (1997) Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19(3):625–634

    Article  CAS  PubMed  Google Scholar 

  215. Ruchhoeft ML, Ohnuma S, McNeill L, Holt CE, Harris WA (1999) The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J Neurosci 19(19):8454–8463

    Article  CAS  PubMed  Google Scholar 

  216. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2(8):531–539. https://doi.org/10.1038/35019573

    Article  CAS  PubMed  Google Scholar 

  217. Yamanaka T, Horikoshi Y, Suzuki A, Sugiyama Y, Kitamura K, Maniwa R, Nagai Y, Yamashita A, Hirose T, Ishikawa H, Ohno S (2001) PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6(8):721–731

    Article  CAS  PubMed  Google Scholar 

  218. Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S (2001) Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 152(6):1183–1196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  219. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T (2000) A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2(8):540–547. https://doi.org/10.1038/35019582

    Article  CAS  PubMed  Google Scholar 

  220. Graybill C, Wee B, Atwood SX, Prehoda KE (2012) Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J Biol Chem 287(25):21003–21011. https://doi.org/10.1074/jbc.M112.360495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Atwood SX, Chabu C, Penkert RR, Doe CQ, Prehoda KE (2007) Cdc42 acts downstream of Bazooka to regulate neuroblast polarity through Par-6 aPKC. J Cell Sci 120(Pt 18):3200–3206. https://doi.org/10.1242/jcs.014902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  222. Liu XF, Ishida H, Raziuddin R, Miki T (2004) Nucleotide exchange factor ECT2 interacts with the polarity protein complex Par6/Par3/protein kinase Czeta (PKCzeta) and regulates PKCzeta activity. Mol Cell Biol 24(15):6665–6675. https://doi.org/10.1128/MCB.24.15.6665-6675.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  223. Kunda P, Paglini G, Quiroga S, Kosik K, Caceres A (2001) Evidence for the involvement of Tiam1 in axon formation. J Neurosci 21(7):2361–2372

    Article  CAS  PubMed  Google Scholar 

  224. Chen X, Macara IG (2005) Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7(3):262–269. https://doi.org/10.1038/ncb1226

    Article  CAS  PubMed  Google Scholar 

  225. Matsuzawa K, Akita H, Watanabe T, Kakeno M, Matsui T, Wang S, Kaibuchi K (2016) PAR3–aPKC regulates Tiam1 by modulating suppressive internal interactions. Mol Biol Cell 27(9):1511–1523. https://doi.org/10.1091/mbc.E15-09-0670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  226. Kanzaki M, Mora S, Hwang JB, Saltiel AR, Pessin JE (2004) Atypical protein kinase C (PKCzeta/lambda) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. J Cell Biol 164(2):279–290. https://doi.org/10.1083/jcb.200306152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  227. Dupraz S, Grassi D, Bernis ME, Sosa L, Bisbal M, Gastaldi L, Jausoro I, Caceres A, Pfenninger KH, Quiroga S (2009) The TC10-Exo70 complex is essential for membrane expansion and axonal specification in developing neurons. J Neurosci 29(42):13292–13301. https://doi.org/10.1523/JNEUROSCI.3907-09.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  228. Chen WS, Chen YJ, Huang YA, Hsieh BY, Chiu HC, Kao PY, Chao CY, Hwang E (2017) Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Sci Rep 7:42297. https://doi.org/10.1038/srep42297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  229. Mori D, Yamada M, Mimori-Kiyosue Y, Shirai Y, Suzuki A, Ohno S, Saya H, Wynshaw-Boris A, Hirotsune S (2009) An essential role of the aPKC-Aurora A-NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat Cell Biol 11(9):1057–1068. https://doi.org/10.1038/ncb1919

    Article  CAS  PubMed  Google Scholar 

  230. Yamada M, Hirotsune S, Wynshaw-Boris A (2010) The essential role of LIS1, NDEL1 and Aurora-A in polarity formation and microtubule organization during neurogensis. Cell Adhes Migr 4(2):180–184

    Article  Google Scholar 

  231. Tisdale EJ (2003) Rab2 interacts directly with atypical protein kinase C (aPKC) iota/lambda and inhibits aPKCiota/lambda-dependent glyceraldehyde-3-phosphate dehydrogenase phosphorylation. J Biol Chem 278(52):52524–52530. https://doi.org/10.1074/jbc.M309343200

    Article  CAS  PubMed  Google Scholar 

  232. Ayala J, Touchot N, Zahraoui A, Tavitian A, Prochiantz A (1990) The product of rab2, a small GTP binding protein, increases neuronal adhesion, and neurite growth in vitro. Neuron 4(5):797–805

    Article  CAS  PubMed  Google Scholar 

  233. Hyenne V, Tremblay-Boudreault T, Velmurugan R, Grant BD, Loerke D, Labbe JC (2012) RAB-5 controls the cortical organization and dynamics of PAR proteins to maintain C. elegans early embryonic polarity. PLoS One 7(4):e35286. https://doi.org/10.1371/journal.pone.0035286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  234. Falk J, Konopacki FA, Zivraj KH, Holt CE (2014) Rab5 and Rab4 regulate axon elongation in the Xenopus visual system. J Neurosci 34(2):373–391. https://doi.org/10.1523/JNEUROSCI.0876-13.2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  235. Mori Y, Matsui T, Fukuda M (2013) Rabex-5 protein regulates dendritic localization of small GTPase Rab17 and neurite morphogenesis in hippocampal neurons. J Biol Chem 288(14):9835–9847. https://doi.org/10.1074/jbc.M112.427591

    Article  PubMed Central  PubMed  Google Scholar 

  236. Mori Y, Fukuda M (2013) Rabex-5 determines the neurite localization of its downstream Rab proteins in hippocampal neurons. Commun Integr Biol 6(5):e25433. https://doi.org/10.4161/cib.25433

    Article  PubMed Central  PubMed  Google Scholar 

  237. Elias S, McGuire JR, Yu H, Humbert S (2015) Huntingtin is required for epithelial polarity through RAB11A-mediated apical trafficking of PAR3–aPKC. PLoS Biol 13(5):e1002142. https://doi.org/10.1371/journal.pbio.1002142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  238. Molina-Calavita M, Barnat M, Elias S, Aparicio E, Piel M, Humbert S (2014) Mutant huntingtin affects cortical progenitor cell division and development of the mouse neocortex. J Neurosci 34(30):10034–10040. https://doi.org/10.1523/JNEUROSCI.0715-14.2014

    Article  CAS  PubMed  Google Scholar 

  239. Takano T, Tomomura M, Yoshioka N, Tsutsumi K, Terasawa Y, Saito T, Kawano H, Kamiguchi H, Fukuda M, Hisanaga S (2012) LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J Neurosci 32(19):6587–6599. https://doi.org/10.1523/JNEUROSCI.5317-11.2012

    Article  CAS  PubMed  Google Scholar 

  240. Shirane M, Nakayama KI (2006) Protrudin induces neurite formation by directional membrane trafficking. Science 314(5800):818–821. https://doi.org/10.1126/science.1134027

    Article  CAS  PubMed  Google Scholar 

  241. Calero-Cuenca FJ, Espinosa-Vazquez JM, Reina-Campos M, Diaz-Meco MT, Moscat J, Sotillos S (2016) Nuclear fallout provides a new link between aPKC and polarized cell trafficking. BMC Biol 14:32. https://doi.org/10.1186/s12915-016-0253-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  242. Chang J, Lee S, Blackstone C (2013) Protrudin binds atlastins and endoplasmic reticulum-shaping proteins and regulates network formation. Proc Natl Acad Sci USA 110(37):14954–14959. https://doi.org/10.1073/pnas.1307391110

    Article  PubMed Central  PubMed  Google Scholar 

  243. Yan D, Guo L, Wang Y (2006) Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J Cell Biol 174(3):415–424. https://doi.org/10.1083/jcb.200511028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  244. Drinjakovic J, Jung H, Campbell DS, Strochlic L, Dwivedy A, Holt CE (2010) E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65(3):341–357. https://doi.org/10.1016/j.neuron.2010.01.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  245. Cheng PL, Lu H, Shelly M, Gao H, Poo MM (2011) Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 69(2):231–243. https://doi.org/10.1016/j.neuron.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  246. Shelly M, Lim BK, Cancedda L, Heilshorn SC, Gao H, Poo MM (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327(5965):547–552. https://doi.org/10.1126/science.1179735

    Article  CAS  PubMed  Google Scholar 

  247. Vyas P, Singh A, Murawala P, Joseph J (2013) Nup358 interacts with Dishevelled and aPKC to regulate neuronal polarity. Biol Open 2(11):1270–1278. https://doi.org/10.1242/bio.20135363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  248. Yadav SK, Magre I, Singh A, Khuperkar D, Joseph J (2016) Regulation of aPKC activity by Nup358 dependent SUMO modification. Sci Rep 6:34100. https://doi.org/10.1038/srep34100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  249. Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A, North BJ, Michan S, Baloh RH, Golden JP, Schmidt RE, Sinclair DA, Auwerx J, Milbrandt J (2011) Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci USA 108(43):E952–E961. https://doi.org/10.1073/pnas.1104969108

    Article  PubMed Central  PubMed  Google Scholar 

  250. von Stein W, Ramrath A, Grimm A, Muller-Borg M, Wodarz A (2005) Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132(7):1675–1686. https://doi.org/10.1242/dev.01720

    Article  CAS  Google Scholar 

  251. Feng W, Wu H, Chan LN, Zhang M (2008) Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem 283(34):23440–23449. https://doi.org/10.1074/jbc.M802482200

    Article  CAS  PubMed  Google Scholar 

  252. Itoh N, Nakayama M, Nishimura T, Fujisue S, Nishioka T, Watanabe T, Kaibuchi K (2010) Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3-kinase) as Par3 partners by proteomic analysis. Cytoskeleton (Hoboken) 67(5):297–308. https://doi.org/10.1002/cm.20444

    Article  CAS  Google Scholar 

  253. Krahn MP, Klopfenstein DR, Fischer N, Wodarz A (2010) Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol 20(7):636–642. https://doi.org/10.1016/j.cub.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  254. Xu G, Wang R, Wang Z, Lei Q, Yu Z, Liu C, Li P, Yang Z, Cheng X, Li G, Wu M (2015) NGL-2 is a new partner of PAR complex in axon differentiation. J Neurosci 35(18):7153–7164. https://doi.org/10.1523/JNEUROSCI.4726-14.2015

    Article  CAS  PubMed  Google Scholar 

  255. Ruiz-Canada C, Ashley J, Moeckel-Cole S, Drier E, Yin J, Budnik V (2004) New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron 42(4):567–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  256. Tanabe K, Kani S, Shimizu T, Bae YK, Abe T, Hibi M (2010) Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus. J Neurosci 30(50):16983–16992. https://doi.org/10.1523/JNEUROSCI.3352-10.2010

    Article  CAS  PubMed  Google Scholar 

  257. Zhang H, Macara IG (2006) The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 8(3):227–237. https://doi.org/10.1038/ncb1368

    Article  CAS  PubMed  Google Scholar 

  258. Zhang H, Macara IG (2008) The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev Cell 14(2):216–226. https://doi.org/10.1016/j.devcel.2007.11.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  259. Ron S, Dudai Y, Segal M (2012) Overexpression of PKMzeta alters morphology and function of dendritic spines in cultured cortical neurons. Cereb Cortex 22(11):2519–2528. https://doi.org/10.1093/cercor/bhr323

    Article  PubMed  Google Scholar 

  260. Hu J, Adler K, Farah CA, Hastings MH, Sossin WS, Schacher S (2017) Cell-specific PKM isoforms contribute to the maintenance of different forms of persistent long-term synaptic plasticity. J Neurosci 37(10):2746–2763. https://doi.org/10.1523/JNEUROSCI.2805-16.2017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  261. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8(1):34–42. https://doi.org/10.1038/nn1374

    Article  CAS  PubMed  Google Scholar 

  262. Moreau MM, Piguel N, Papouin T, Koehl M, Durand CM, Rubio ME, Loll F, Richard EM, Mazzocco C, Racca C, Oliet SH, Abrous DN, Montcouquiol M, Sans N (2010) The planar polarity protein Scribble1 is essential for neuronal plasticity and brain function. J Neurosci 30(29):9738–9752. https://doi.org/10.1523/JNEUROSCI.6007-09.2010

    Article  CAS  PubMed  Google Scholar 

  263. Yamanaka T, Ohno S (2008) Role of Lgl/Dlg/Scribble in the regulation of epithelial junction, polarity and growth. Front Biosci 13:6693–6707

    Article  CAS  PubMed  Google Scholar 

  264. Lahey T, Gorczyca M, Jia XX, Budnik V (1994) The Drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure. Neuron 13(4):823–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  265. Budnik V, Koh YH, Guan B, Hartmann B, Hough C, Woods D, Gorczyca M (1996) Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17(4):627–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  266. Guan B, Hartmann B, Kho YH, Gorczyca M, Budnik V (1996) The Drosophila tumor suppressor gene, dlg, is involved in structural plasticity at a glutamatergic synapse. Curr Biol 6(6):695–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  267. Zhou Z, Guo Y, Liu Y, Zhang F, Wang Y, Shen B, Qin Y, Qiu J (2015) Methylation-mediated silencing of Dlg5 facilitates bladder cancer metastasis. Exp Cell Res 331(2):399–407. https://doi.org/10.1016/j.yexcr.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  268. Tao YX, Rumbaugh G, Wang GD, Petralia RS, Zhao C, Kauer FW, Tao F, Zhuo M, Wenthold RJ, Raja SN, Huganir RL, Bredt DS, Johns RA (2003) Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci 23(17):6703–6712

    Article  CAS  PubMed  Google Scholar 

  269. Cuthbert PC, Stanford LE, Coba MP, Ainge JA, Fink AE, Opazo P, Delgado JY, Komiyama NH, O’Dell TJ, Grant SG (2007) Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. J Neurosci 27(10):2673–2682. https://doi.org/10.1523/JNEUROSCI.4457-06.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  270. Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O’Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396(6710):433–439. https://doi.org/10.1038/24790

    Article  CAS  PubMed  Google Scholar 

  271. Wang SH, Celic I, Choi SY, Riccomagno M, Wang Q, Sun LO, Mitchell SP, Vasioukhin V, Huganir RL, Kolodkin AL (2014) Dlg5 regulates dendritic spine formation and synaptogenesis by controlling subcellular N-cadherin localization. J Neurosci 34(38):12745–12761. https://doi.org/10.1523/JNEUROSCI.1280-14.2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  272. Saito Y, Oinuma I, Fujimoto S, Negishi M (2009) Plexin-B1 is a GTPase activating protein for M-Ras, remodelling dendrite morphology. EMBO Rep 10(6):614–621. https://doi.org/10.1038/embor.2009.63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  273. Lee T, Winter C, Marticke SS, Lee A, Luo L (2000) Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25(2):307–316

    Article  CAS  PubMed  Google Scholar 

  274. Li Z, Van Aelst L, Cline HT (2000) Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci 3(3):217–225. https://doi.org/10.1038/72920

    Article  CAS  PubMed  Google Scholar 

  275. Wong WT, Faulkner-Jones BE, Sanes JR, Wong RO (2000) Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J Neurosci 20(13):5024–5036

    Article  CAS  PubMed  Google Scholar 

  276. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20(14):5329–5338

    Article  CAS  PubMed  Google Scholar 

  277. Geppert M, Goda Y, Stevens CF, Sudhof TC (1997) The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387(6635):810–814. https://doi.org/10.1038/42954

    Article  CAS  PubMed  Google Scholar 

  278. Huber LA, de Hoop MJ, Dupree P, Zerial M, Simons K, Dotti C (1993) Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. J Cell Biol 123(1):47–55

    Article  CAS  PubMed  Google Scholar 

  279. Zou W, Yadav S, DeVault L, Nung Jan Y, Sherwood DR (2015) RAB-10-dependent membrane transport is required for dendrite arborization. PLoS Genet 11(9):e1005484. https://doi.org/10.1371/journal.pgen.1005484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Edward K. Mandel for the discussions. CVR is a HHMI Faculty Scholar (Grant 55108561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie M. Hapak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hapak, S.M., Rothlin, C.V. & Ghosh, S. PAR3–PAR6–atypical PKC polarity complex proteins in neuronal polarization. Cell. Mol. Life Sci. 75, 2735–2761 (2018). https://doi.org/10.1007/s00018-018-2828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2828-6

Keywords

Navigation