Skip to main content

Advertisement

Log in

Cellular mechanisms responsible for cell-to-cell spreading of prions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 11 June 2018

This article has been updated

Abstract

Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 11 June 2018

    In the original publication, part of acknowledgement text was missing. The complete acknowledgement section should read as follows.

Abbreviations

BMDCs:

Bone-marrow-derived dendritic cells

ESCRT:

Endosomal sorting complex required for transport

EVs:

Extracellular vesicles

FDC:

Follicular dendritic cells

MVBs:

Multivesicular bodies

PMCA:

Protein misfolding cyclic amplification

TNTs:

Tunneling nanotubes

TSEs:

Transmissible spongiform encephalopathies

PrPC :

Normal form of the PrP protein in uninfected tissues or cells

PrPSc :

Misfolded form of PrP found in infected cells and tissues

References

  1. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550

    Article  PubMed  CAS  Google Scholar 

  2. Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89:1105–1152

    Article  PubMed  CAS  Google Scholar 

  3. Weissmann C (2004) The state of the prion. Nat Rev Microbiol 2:861–871

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Prusiner SB, Cochran SP, Groth DF, Downey DE, Bowman KA et al (1982) Measurement of the scrapie agent using an incubation time interval assay. Ann Neurol 11:353–358

    Article  PubMed  CAS  Google Scholar 

  6. Liberski PP, Sikorska B, Brown P (2012) Kuru: the first prion disease. Adv Exp Med Biol 724:143–153

    Article  PubMed  CAS  Google Scholar 

  7. Gajdusek DC (1977) Unconventional viruses and the origin and disappearance of kuru. Science 197:943–960

    Article  PubMed  CAS  Google Scholar 

  8. Wells GA, Scott AC, Johnson CT, Gunning RF, Hancock RD et al (1987) A novel progressive spongiform encephalopathy in cattle. Vet Rec 121:419–420

    Article  PubMed  CAS  Google Scholar 

  9. Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K et al (1996) A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347:921–925

    Article  PubMed  CAS  Google Scholar 

  10. van Keulen LJ, Bossers A, van Zijderveld F (2008) TSE pathogenesis in cattle and sheep. Vet Res 39:24

    Article  PubMed  Google Scholar 

  11. Haley NJ, Hoover EA (2015) Chronic wasting disease of cervids: current knowledge and future perspectives. Annu Rev Anim Biosci 3:305–325

    Article  PubMed  CAS  Google Scholar 

  12. Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311

    Article  PubMed  CAS  Google Scholar 

  13. Vilette D (2008) Cell models of prion infection. Vet Res 39:10

    Article  PubMed  CAS  Google Scholar 

  14. Arellano-Anaya ZE, Savistchenko J, Mathey J, Huor A, Lacroux C et al (2011) A simple, versatile and sensitive cell-based assay for prions from various species. PLoS One 6:e20563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci USA 100:11666–11671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  PubMed  CAS  Google Scholar 

  17. Choi JK, Cali I, Surewicz K, Kong Q, Gambetti P et al (2016) Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc Natl Acad Sci USA 113:13851–13856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Soto C (2011) Prion hypothesis: the end of the controversy? Trends Biochem Sci 36:151–158

    Article  PubMed  CAS  Google Scholar 

  20. Bruce ME (1993) Scrapie strain variation and mutation. Br Med Bull 49:822–838

    Article  PubMed  CAS  Google Scholar 

  21. Morales R, Abid K, Soto C (2007) The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta 1772:681–691

    Article  PubMed  CAS  Google Scholar 

  22. Chesebro B (1998) BSE and prions: uncertainties about the agent. Science 279:42–43

    Article  PubMed  CAS  Google Scholar 

  23. Bruce ME, Dickinson AG (1987) Biological evidence that scrapie agent has an independent genome. J Gen Virol 68(Pt 1):79–89

    Article  PubMed  Google Scholar 

  24. Arima K, Nishida N, Sakaguchi S, Shigematsu K, Atarashi R et al (2005) Biological and biochemical characteristics of prion strains conserved in persistently infected cell cultures. J Virol 79:7104–7112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Courageot MP, Daude N, Nonno R, Paquet S, Di Bari MA et al (2008) A cell line infectible by prion strains from different species. J Gen Virol 89:341–347

    Article  PubMed  CAS  Google Scholar 

  26. Castilla J, Morales R, Saa P, Barria M, Gambetti P et al (2008) Cell-free propagation of prion strains. EMBO J 27:2557–2566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68:7859–7868

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I et al (1997) The same prion strain causes vCJD and BSE. Nature 389(448–450):526

    Google Scholar 

  29. Safar J, Wille H, Itri V, Groth D, Serban H et al (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4:1157–1165

    Article  PubMed  CAS  Google Scholar 

  30. Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J et al (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 6:e1000859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mabbott NA (2017) Immunology of prion protein and prions. Prog Mol Biol Transl Sci 150:203–240

    Article  PubMed  Google Scholar 

  32. Glaysher BR, Mabbott NA (2007) Role of the GALT in scrapie agent neuroinvasion from the intestine. J Immunol 178:3757–3766

    Article  PubMed  CAS  Google Scholar 

  33. Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A et al (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5:1308–1312

    Article  PubMed  CAS  Google Scholar 

  34. Kitamoto T, Muramoto T, Mohri S, Doh-Ura K, Tateishi J (1991) Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J Virol 65:6292–6295

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F et al (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259

    Article  PubMed  CAS  Google Scholar 

  36. Lorenz RG, Newberry RD (2004) Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann N Y Acad Sci 1029:44–57

    Article  PubMed  CAS  Google Scholar 

  37. Neutra MR, Frey A, Kraehenbuhl JP (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell 86:345–348

    Article  PubMed  CAS  Google Scholar 

  38. Foster N, Macpherson GG (2010) Murine cecal patch M cells transport infectious prions in vivo. J Infect Dis 202:1916–1919

    Article  PubMed  CAS  Google Scholar 

  39. Takakura I, Miyazawa K, Kanaya T, Itani W, Watanabe K et al (2011) Orally administered prion protein is incorporated by m cells and spreads into lymphoid tissues with macrophages in prion protein knockout mice. Am J Pathol 179:1301–1309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Heppner FL, Christ AD, Klein MA, Prinz M, Fried M et al (2001) Transepithelial prion transport by M cells. Nat Med 7:976–977

    Article  PubMed  CAS  Google Scholar 

  41. Donaldson DS, Kobayashi A, Ohno H, Yagita H, Williams IR et al (2012) M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol 5:216–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Donaldson DS, Sehgal A, Rios D, Williams IR, Mabbott NA (2016) Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog 12:e1006075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kujala P, Raymond CR, Romeijn M, Godsave SF, van Kasteren SI et al (2011) Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog 7:e1002449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Okamoto M, Furuoka H, Horiuchi M, Noguchi T, Hagiwara K et al (2003) Experimental transmission of abnormal prion protein (PrPsc) in the small intestinal epithelial cells of neonatal mice. Vet Pathol 40:723–727

    Article  PubMed  CAS  Google Scholar 

  45. Castro-Seoane R, Hummerich H, Sweeting T, Tattum MH, Linehan JM et al (2012) Plasmacytoid dendritic cells sequester high prion titres at early stages of prion infection. PLoS Pathog 8:e1002538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Raymond CR, Aucouturier P, Mabbott NA (2007) In vivo depletion of CD11c+ cells impairs scrapie agent neuroinvasion from the intestine. J Immunol 179:7758–7766

    Article  PubMed  CAS  Google Scholar 

  47. Heinen E, Bosseloir A, Bouzahzah F (1995) Follicular dendritic cells: origin and function. Curr Top Microbiol Immunol 201:15–47

    PubMed  CAS  Google Scholar 

  48. Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C et al (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 165:1259–1265

    Article  PubMed  CAS  Google Scholar 

  49. Klohn PC, Castro-Seoane R, Collinge J (2013) Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 67:359–368

    Article  PubMed  Google Scholar 

  50. Aucouturier P, Geissmann F, Damotte D, Saborio GP, Meeker HC et al (2001) Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J Clin Investig 108:703–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Raymond CR, Mabbott NA (2007) Assessing the involvement of migratory dendritic cells in the transfer of the scrapie agent from the immune to peripheral nervous systems. J Neuroimmunol 187:114–125

    Article  PubMed  CAS  Google Scholar 

  52. Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M et al (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425:957–962

    Article  PubMed  CAS  Google Scholar 

  53. McCulloch L, Brown KL, Bradford BM, Hopkins J, Bailey M et al (2011) Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog 7:e1002402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Glatzel M, Aguzzi A (2000) PrP(C) expression in the peripheral nervous system is a determinant of prion neuroinvasion. J Gen Virol 81:2813–2821

    Article  PubMed  CAS  Google Scholar 

  55. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P et al (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  PubMed  CAS  Google Scholar 

  56. Grassmann A, Wolf H, Hofmann J, Graham J, Vorberg I (2013) Cellular aspects of prion replication in vitro. Viruses 5:374–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Krejciova Z, Alibhai J, Zhao C, Krencik R, Rzechorzek NM et al (2017) Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner. J Exp Med 214:3481–3495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cronier S, Laude H, Peyrin JM (2004) Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc Natl Acad Sci USA 101:12271–12276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Krauss S, Vorberg I (2013) Prions ex vivo: what cell culture models tell us about infectious proteins. Int J Cell Biol 2013:704546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413:282–288

    Article  PubMed  CAS  Google Scholar 

  61. Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15:102–111

    Article  PubMed  CAS  Google Scholar 

  62. Clarke MC, Millson GC (1976) The membrane location of scrapie infectivity. J Gen Virol 31:441–445

    Article  PubMed  CAS  Google Scholar 

  63. Klein TR, Kirsch D, Kaufmann R, Riesner D (1998) Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol Chem 379:655–666

    Article  PubMed  CAS  Google Scholar 

  64. Prusiner SB, Hadlow WJ, Eklund CM, Race RE (1977) Sedimentation properties of the scrapie agent. Proc Natl Acad Sci USA 74:4656–4660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gabizon R, Prusiner SB (1990) Prion liposomes. Biochem J 266:1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Veith NM, Plattner H, Stuermer CA, Schulz-Schaeffer WJ, Burkle A (2009) Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. Eur J Cell Biol 88:45–63

    Article  PubMed  CAS  Google Scholar 

  67. Peters PJ, Mironov A Jr, Peretz D, van Donselaar E, Leclerc E et al (2003) Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol 162:703–717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Marijanovic Z, Caputo A, Campana V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathog 5:e1000426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Godsave SF, Wille H, Kujala P, Latawiec D, DeArmond SJ et al (2008) Cryo-immunogold electron microscopy for prions: toward identification of a conversion site. J Neurosci 28:12489–12499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E et al (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128:1434–1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Vilette D, Laulagnier K, Huor A, Alais S, Simoes S et al (2015) Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 72:4409–4427

    Article  PubMed  CAS  Google Scholar 

  72. Kanu N, Imokawa Y, Drechsel DN, Williamson RA, Birkett CR et al (2002) Transfer of scrapie prion infectivity by cell contact in culture. Curr Biol 12:523–530

    Article  PubMed  CAS  Google Scholar 

  73. Langevin C, Gousset K, Costanzo M, Richard-Le Goff O, Zurzolo C (2010) Characterization of the role of dendritic cells in prion transfer to primary neurons. Biochem J 431:189–198

    Article  PubMed  CAS  Google Scholar 

  74. Paquet S, Langevin C, Chapuis J, Jackson GS, Laude H et al (2007) Efficient dissemination of prions through preferential transmission to nearby cells. J Gen Virol 88:706–713

    Article  PubMed  CAS  Google Scholar 

  75. Weissmann C, Enari M, Klohn PC, Rossi D, Flechsig E (2002) Transmission of prions. Proc Natl Acad Sci USA 99(Suppl 4):16378–16383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Goold R, Rabbanian S, Sutton L, Andre R, Arora P et al (2011) Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2:281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Goold R, McKinnon C, Rabbanian S, Collinge J, Schiavo G et al (2013) Alternative fates of newly formed PrPSc upon prion conversion on the plasma membrane. J Cell Sci 126:3552–3562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267:16188–16199

    PubMed  CAS  Google Scholar 

  79. Magalhaes AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D et al (2005) Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 25:5207–5216

    Article  PubMed  CAS  Google Scholar 

  80. Moya KL, Hassig R, Creminon C, Laffont I, Di Giamberardino L (2004) Enhanced detection and retrograde axonal transport of PrPc in peripheral nerve. J Neurochem 88:155–160

    Article  PubMed  CAS  Google Scholar 

  81. Kratzel C, Kruger D, Beekes M (2007) Prion propagation in a nerve conduit model containing segments devoid of axons. J Gen Virol 88:3479–3485

    Article  PubMed  CAS  Google Scholar 

  82. Kunzi V, Glatzel M, Nakano MY, Greber UF, Van Leuven F et al (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22:7471–7477

    Article  PubMed  CAS  Google Scholar 

  83. Shearin H, Bessen RA (2014) Axonal and transynaptic spread of prions. J Virol 88:8640–8655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Langevin C, Andreoletti O, Le Dur A, Laude H, Beringue V (2011) Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model. Neurobiol Dis 41:219–225

    Article  PubMed  CAS  Google Scholar 

  85. Casaccia-Bonnefil P, Kascsak RJ, Fersko R, Callahan S, Carp RI (1993) Brain regional distribution of prion protein PrP27-30 in mice stereotaxically microinjected with different strains of scrapie. J Infect Dis 167:7–12

    Article  PubMed  CAS  Google Scholar 

  86. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874

    Article  PubMed  CAS  Google Scholar 

  87. Raeber AJ, Race RE, Brandner S, Priola SA, Sailer A et al (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J 16:6057–6065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Guiroy DC, Wakayama I, Liberski PP, Gajdusek DC (1994) Relationship of microglia and scrapie amyloid-immunoreactive plaques in kuru, Creutzfeldt–Jakob disease and Gerstmann–Straussler syndrome. Acta Neuropathol 87:526–530

    Article  PubMed  CAS  Google Scholar 

  89. Aguzzi A, Zhu C (2017) Microglia in prion diseases. J Clin Investig 127:3230–3239

    Article  PubMed  Google Scholar 

  90. Alleaume-Butaux A, Nicot S, Pietri M, Baudry A, Dakowski C et al (2015) Double-edge sword of sustained ROCK activation in prion diseases through neuritogenesis defects and prion accumulation. PLoS Pathog 11:e1005073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Peyrin JM, Deleglise B, Saias L, Vignes M, Gougis P et al (2011) Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip 11:3663–3673

    Article  PubMed  CAS  Google Scholar 

  92. Dhainaut M, Moser M (2014) Regulation of immune reactivity by intercellular transfer. Front Immunol 5:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Schatzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ et al (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71:8821–8831

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Fevrier B, Vilette D, Archer F, Loew D, Faigle W et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101:9683–9688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948

    Article  PubMed  CAS  Google Scholar 

  96. Alais S, Simoes S, Baas D, Lehmann S, Raposo G et al (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100:603–615

    Article  PubMed  CAS  Google Scholar 

  97. Coleman BM, Hanssen E, Lawson VA, Hill AF (2012) Prion-infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J 26:4160–4173

    Article  PubMed  CAS  Google Scholar 

  98. Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J et al (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25:2674–2685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R et al (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211:582–590

    Article  PubMed  CAS  Google Scholar 

  100. Diedrich JF, Bendheim PE, Kim YS, Carp RI, Haase AT (1991) Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. Proc Natl Acad Sci USA 88:375–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Hajj GN, Arantes CP, Dias MV, Roffe M, Costa-Silva B et al (2013) The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cell Mol Life Sci 70:3211–3227

    Article  PubMed  CAS  Google Scholar 

  102. Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE (2007) Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 67:1815–1829

    Article  PubMed  CAS  Google Scholar 

  103. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648

    Article  PubMed  CAS  Google Scholar 

  104. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A et al (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46:409–418

    Article  PubMed  CAS  Google Scholar 

  105. Victoria GS, Arkhipenko A, Zhu S, Syan S, Zurzolo C (2016) Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Sci Rep 6:20762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Raab-Traub N, Dittmer DP (2017) Viral effects on the content and function of extracellular vesicles. Nat Rev Microbiol 15:559–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gould SJ, Booth AM, Hildreth JE (2003) The Trojan exosome hypothesis. Proc Natl Acad Sci USA 100:10592–10597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208

    Article  PubMed  CAS  Google Scholar 

  109. Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125

    Article  PubMed  CAS  Google Scholar 

  110. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565

    Article  PubMed  CAS  Google Scholar 

  111. Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10:925–937

    Article  PubMed  CAS  Google Scholar 

  112. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  PubMed  CAS  Google Scholar 

  113. Boker KO, Lemus-Diaz N, Rinaldi Ferreira R, Schiller L, Schneider S et al (2018) The impact of the CD9 tetraspanin on lentivirus infectivity and exosome secretion. Mol Ther 26:634–647

    Article  PubMed  CAS  Google Scholar 

  114. van Niel G, Charrin S, Simoes S, Romao M, Rochin L et al (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21:708–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16:70–78

    Article  PubMed  CAS  Google Scholar 

  116. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L et al (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179:485–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Oshima R, Hasegawa T, Tamai K, Sugeno N, Yoshida S et al (2016) ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways. Sci Rep 6:24997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Heiseke A, Aguib Y, Riemer C, Baier M, Schatzl HM (2009) Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 109:25–34

    Article  PubMed  CAS  Google Scholar 

  119. Ishibashi D, Homma T, Nakagaki T, Fuse T, Sano K et al (2015) Strain-dependent effect of macroautophagy on abnormally folded prion protein degradation in infected neuronal cells. PLoS One 10:e0137958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M et al (2015) Prion strains are differentially released through the exosomal pathway. Cell Mol Life Sci 72:1185–1196

    Article  PubMed  CAS  Google Scholar 

  121. Laferriere F, Tixador P, Moudjou M, Chapuis J, Sibille P et al (2013) Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog 9:e1003702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Fang Y, Wu N, Gan X, Yan W, Morrell JC et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5:e158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Vidal M, Mangeat P, Hoekstra D (1997) Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J Cell Sci 110(Pt 16):1867–1877

    PubMed  CAS  Google Scholar 

  124. Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40:10937–10949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Guo BB, Bellingham SA, Hill AF (2015) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 290:3455–3467

    Article  PubMed  CAS  Google Scholar 

  126. Savina A, Furlan M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278:20083–20090

    Article  PubMed  CAS  Google Scholar 

  127. Guo BB, Bellingham SA, Hill AF (2016) Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem 291:5128–5137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. https://doi.org/10.3402/jev.v1i0.18397

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zabeo D, Cvjetkovic A, Lasser C, Schorb M, Lotvall J et al (2017) Exosomes purified from a single cell type have diverse morphology. J Extracell Vesicles 6:1329476

    Article  PubMed  PubMed Central  Google Scholar 

  130. Edgar JR, Eden ER, Futter CE (2014) Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15:197–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE et al (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172:923–935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Mattei V, Barenco MG, Tasciotti V, Garofalo T, Longo A et al (2009) Paracrine diffusion of PrP(C) and propagation of prion infectivity by plasma membrane-derived microvesicles. PLoS One 4:e5057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Krasemann S, Neumann M, Luepke JP, Grashorn J, Wurr S et al (2012) Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease. Acta Neuropathol 124:111–126

    Article  PubMed  Google Scholar 

  134. Leblanc P, Hasenkrug K, Ward A, Myers L, Messer RJ et al (2012) Co-infection with the friend retrovirus and mouse scrapie does not alter prion disease pathogenesis in susceptible mice. PLoS One 7:e30872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  PubMed  CAS  Google Scholar 

  136. Austefjord MW, Gerdes HH, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol 7:e27934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Sisakhtnezhad S, Khosravi L (2015) Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 94:429–443

    Article  PubMed  CAS  Google Scholar 

  138. Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–475

    Article  PubMed  CAS  Google Scholar 

  139. Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S et al (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483

    Article  PubMed  Google Scholar 

  140. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A et al (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:211–219

    Article  PubMed  CAS  Google Scholar 

  141. Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 254:142–148

    Article  PubMed  CAS  Google Scholar 

  142. Favoreel HW, Van Minnebruggen G, Adriaensen D, Nauwynck HJ (2005) Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. Proc Natl Acad Sci USA 102:8990–8995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kumar A, Kim JH, Ranjan P, Metcalfe MG, Cao W et al (2017) Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci Rep 7:40360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Guo R, Katz BB, Tomich JM, Gallagher T, Fang Y (2016) Porcine reproductive and respiratory syndrome virus utilizes nanotubes for intercellular spread. J Virol 90:5163–5175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  PubMed  CAS  Google Scholar 

  146. Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23:309–318

    Article  PubMed  CAS  Google Scholar 

  147. Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class I+ cells in the mouse cornea. J Immunol 180:5779–5783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Huang FP, Farquhar CF, Mabbott NA, Bruce ME, MacPherson GG (2002) Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J Gen Virol 83:267–271

    Article  PubMed  CAS  Google Scholar 

  149. Zhu S, Victoria GS, Marzo L, Ghosh R, Zurzolo C (2015) Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion 9:125–135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Rouvinski A, Karniely S, Kounin M, Moussa S, Goldberg MD et al (2014) Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. J Cell Biol 204:423–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Baron GS, Magalhaes AC, Prado MA, Caughey B (2006) Mouse-adapted scrapie infection of SN56 cells: greater efficiency with microsome-associated versus purified PrP-res. J Virol 80:2106–2117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Victoria GS, Zurzolo C (2017) The spread of prion-like proteins by lysosomes and tunneling nanotubes: implications for neurodegenerative diseases. J Cell Biol 216:2633–2644

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E, Berisa A, Gil D et al (2010) Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteom Clin Appl 4:416–425

    Article  CAS  Google Scholar 

  154. Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF et al (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107:3907–3911

    Article  PubMed  CAS  Google Scholar 

  155. Berrone E, Corona C, Mazza M, Vallino Costassa E, Faro ML et al (2015) Detection of cellular prion protein in exosomes derived from ovine plasma. J Gen Virol 96:3698–3702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Ritchie AJ, Crawford DM, Ferguson DJ, Burthem J, Roberts DJ (2013) Normal prion protein is expressed on exosomes isolated from human plasma. Br J Haematol 163:678–680

    Article  PubMed  CAS  Google Scholar 

  157. Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124:385–393

    Article  PubMed  CAS  Google Scholar 

  158. van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-’t Hoen EN, Garssen J et al (2016) Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components. Mol Cell Proteom 15:3412–3423

    Article  CAS  Google Scholar 

  159. Gough KC, Maddison BC (2010) Prion transmission: prion excretion and occurrence in the environment. Prion 4:275–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Turner ML, Ludlam CA (2009) An update on the assessment and management of the risk of transmission of variant Creutzfeldt–Jakob disease by blood and plasma products. Br J Haematol 144:14–23

    Article  PubMed  Google Scholar 

  161. Lacroux C, Simon S, Benestad SL, Maillet S, Mathey J et al (2008) Prions in milk from ewes incubating natural scrapie. PLoS Pathog 4:e1000238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Franceschini A, Baiardi S, Hughson AG, McKenzie N, Moda F et al (2017) High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci Rep 7:10655

    Article  PubMed  PubMed Central  Google Scholar 

  163. Brown P, Gibbs CJ Jr, Rodgers-Johnson P, Asher DM, Sulima MP et al (1994) Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 35:513–529

    Article  PubMed  CAS  Google Scholar 

  164. Cervenakova L, Saa P, Yakovleva O, Vasilyeva I, de Castro J et al (2016) Are prions transported by plasma exosomes? Transfus Apher Sci 55:70–83

    Article  PubMed  Google Scholar 

  165. Saa P, Yakovleva O, de Castro J, Vasilyeva I, De Paoli SH et al (2014) First demonstration of transmissible spongiform encephalopathy-associated prion protein (PrPTSE) in extracellular vesicles from plasma of mice infected with mouse-adapted variant Creutzfeldt–Jakob disease by in vitro amplification. J Biol Chem 289:29247–29260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20360

    Article  PubMed  PubMed Central  Google Scholar 

  167. Properzi F, Logozzi M, Abdel-Haq H, Federici C, Lugini L et al (2015) Detection of exosomal prions in blood by immunochemistry techniques. J Gen Virol 96:1969–1974

    Article  PubMed  CAS  Google Scholar 

  168. Mustapic M, Eitan E, Werner JK Jr, Berkowitz ST, Lazaropoulos MP et al (2017) Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci 11:278

    Article  PubMed  PubMed Central  Google Scholar 

  169. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  PubMed  CAS  Google Scholar 

  170. Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J et al (2014) Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12:e1001874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S et al (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11:e1001604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Lewis S (2013) Glia: transporting cargo from A to B. Nat Rev Neurosci 14:589

    Article  PubMed  CAS  Google Scholar 

  174. Xin H, Katakowski M, Wang F, Qian JY, Liu XS et al (2017) MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48:747–753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–43115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Gerdes HH, Rustom A, Wang X (2013) Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 130:381–387

    Article  PubMed  CAS  Google Scholar 

  177. Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev Biol 344:941–947

    Article  PubMed  CAS  Google Scholar 

  178. Salas-Vidal E, Lomeli H (2004) Imaging filopodia dynamics in the mouse blastocyst. Dev Biol 265:75–89

    Article  PubMed  CAS  Google Scholar 

  179. Lou E, Fujisawa S, Barlas A, Romin Y, Manova-Todorova K et al (2012) Tunneling nanotubes: a new paradigm for studying intercellular communication and therapeutics in cancer. Commun Integr Biol 5:399–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y et al (2012) Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 7:e33093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Beekes M, Thomzig A, Schulz-Schaeffer WJ, Burger R (2014) Is there a risk of prion-like disease transmission by Alzheimer- or Parkinson-associated protein particles? Acta Neuropathol 128:463–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Masuda-Suzukake M, Nonaka T, Hosokawa M, Kubo M, Shimozawa A et al (2014) Pathological alpha-synuclein propagates through neural networks. Acta Neuropathol Commun 2:88

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ayers JI, Fromholt S, Koch M, DeBosier A, McMahon B et al (2014) Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol 128:791–803

    Article  PubMed  CAS  Google Scholar 

  187. Munch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553

    Article  PubMed  PubMed Central  Google Scholar 

  188. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–134

    Article  PubMed  CAS  Google Scholar 

  189. Nomura T, Watanabe S, Kaneko K, Yamanaka K, Nukina N et al (2014) Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem 289:1192–1202

    Article  PubMed  CAS  Google Scholar 

  190. Sun Z, Diaz Z, Fang X, Hart MP, Chesi A et al (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9:e1000614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Chang YJ, Jeng US, Chiang YL, Hwang IS, Chen YR (2016) The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. J Biol Chem 291:4903–4911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Zhou Q, Lehmer C, Michaelsen M, Mori K, Alterauge D et al (2017) Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Mol Med 9:687–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Jeon I, Cicchetti F, Cisbani G, Lee S, Li E et al (2016) Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol 132:577–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Tan Z, Dai W, van Erp TG, Overman J, Demuro A et al (2015) Huntington’s disease cerebrospinal fluid seeds aggregation of mutant huntingtin. Mol Psychiatry 20:1286–1293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Holmes BB, Diamond MI (2014) Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem 289:19855–19861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Woerman AL, Aoyagi A, Patel S, Kazmi SA, Lobach I et al (2016) Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci USA 113:E8187–E8196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC et al (2011) Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 31:14488–14495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  PubMed  CAS  Google Scholar 

  200. Costanzo M, Zurzolo C (2013) The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 452:1–17

    Article  PubMed  CAS  Google Scholar 

  201. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD et al (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103:11172–11177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Wang Y, Balaji V, Kaniyappan S, Kruger L, Irsen S et al (2017) The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener 12:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E et al (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111:3620–3625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211:897–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J et al (2016) Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta 1862:2004–2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Westergard T, Jensen BK, Wen X, Cai J, Kropf E et al (2016) Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 17:645–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Zhang X, Abels ER, Redzic JS, Margulis J, Finkbeiner S et al (2016) Potential transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in Huntington’s disease: background and evaluation in cell culture. Cell Mol Neurobiol 36:459–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Howitt J, Hill AF (2016) Exosomes in the pathology of neurodegenerative diseases. J Biol Chem 291:26589–26597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260

    Article  PubMed  CAS  Google Scholar 

  211. Gutekunst CA, Levey AI, Heilman CJ, Whaley WL, Yi H et al (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Natl Acad Sci USA 92:8710–8714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Liot G, Zala D, Pla P, Mottet G, Piel M et al (2013) Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci 33:6298–6309

    Article  PubMed  CAS  Google Scholar 

  213. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815

    Article  PubMed  CAS  Google Scholar 

  214. Rodrigues DI, Gutierres J, Pliassova A, Oliveira CR, Cunha RA et al (2014) Synaptic and sub-synaptic localization of amyloid-beta protein precursor in the rat hippocampus. J Alzheimers Dis 40:981–992

    Article  PubMed  CAS  Google Scholar 

  215. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL et al (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin–proteasome system. Am J Pathol 181:1426–1435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R et al (2009) Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139:393–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E et al (2009) Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12:1567–1576

    Article  PubMed  CAS  Google Scholar 

  218. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR et al (2011) Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci 14:750–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Yamamoto K, Tanei ZI, Hashimoto T, Wakabayashi T, Okuno H et al (2015) Chronic optogenetic activation augments abeta pathology in a mouse model of Alzheimer disease. Cell Rep 11:859–865

    Article  PubMed  CAS  Google Scholar 

  220. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A et al (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 19:1085–1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Sacino AN, Brooks M, Thomas MA, McKinney AB, Lee S et al (2014) Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci USA 111:10732–10737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S et al (2014) Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362

    Article  PubMed  CAS  Google Scholar 

  223. Rey NL, Petit GH, Bousset L, Melki R, Brundin P (2013) Transfer of human alpha-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol 126:555–573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G et al (2015) Synaptic contacts enhance cell-to-cell tau pathology propagation. Cell Rep 11:1176–1183

    Article  PubMed  CAS  Google Scholar 

  225. Brahic M, Bousset L, Bieri G, Melki R, Gitler AD (2016) Axonal transport and secretion of fibrillar forms of alpha-synuclein, Abeta42 peptide and HTTExon 1. Acta Neuropathol 131:539–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L et al (2012) Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol 72:517–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Polanco JC, Scicluna BJ, Hill AF, Gotz J (2016) Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J Biol Chem 291:12445–12466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Ngolab J, Trinh I, Rockenstein E, Mante M, Florio J et al (2017) Brain-derived exosomes from dementia with Lewy bodies propagate alpha-synuclein pathology. Acta Neuropathol Commun 5:46

    Article  PubMed  PubMed Central  Google Scholar 

  229. Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W et al (2016) Induction of alpha-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 139:481–494

    Article  PubMed  Google Scholar 

  230. Ding X, Ma M, Teng J, Teng RK, Zhou S et al (2015) Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6:24178–24191

    PubMed  PubMed Central  Google Scholar 

  231. Saman S, Kim W, Raya M, Visnick Y, Miro S et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287:3842–3849

    Article  PubMed  CAS  Google Scholar 

  232. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E et al (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case–control study. Alzheimers Dement 11(600–607):e601

    Google Scholar 

  233. Ishii T, Kawakami E, Endo K, Misawa H, Watabe K (2017) Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging. PLoS One 12:e0179375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Pecho-Vrieseling E, Rieker C, Fuchs S, Bleckmann D, Esposito MS et al (2014) Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci 17:1064–1072

    Article  PubMed  CAS  Google Scholar 

  235. Trajkovic K, Jeong H, Krainc D (2017) Mutant huntingtin is secreted via a late endosomal/lysosomal unconventional secretory pathway. J Neurosci 37:9000–9012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48:356–366

    Article  PubMed  CAS  Google Scholar 

  237. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 287:19440–19451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z et al (2013) Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 126:3678–3685

    Article  PubMed  CAS  Google Scholar 

  239. Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F et al (2016) Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J 35:2120–2138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Rostami J, Holmqvist S, Lindstrom V, Sigvardson J, Westermark GT et al (2017) Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J Neurosci 37:11835–11853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Tardivel M, Begard S, Bousset L, Dujardin S, Coens A et al (2016) Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 4:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E (2014) Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 35:1792–1800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Iguchi Y, Eid L, Parent M, Soucy G, Bareil C et al (2016) Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139:3187–3201

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Marie-Christine Miquel for comments and for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Didier Vilette, Jean Michel Peyrin or Pascal Leblanc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilette, D., Courte, J., Peyrin, J.M. et al. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell. Mol. Life Sci. 75, 2557–2574 (2018). https://doi.org/10.1007/s00018-018-2823-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2823-y

Keywords

Navigation