Skip to main content
Log in

Degradation of the mitochondrial complex I assembly factor TMEM126B under chronic hypoxia

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell stress such as hypoxia elicits adaptive responses, also on the level of mitochondria, and in part is mediated by the hypoxia-inducible factor (HIF) 1α. Adaptation of mitochondria towards acute hypoxic conditions is reasonably well understood, while regulatory mechanisms, especially of respiratory chain assembly factors, under chronic hypoxia remains elusive. One of these assembly factors is transmembrane protein 126B (TMEM126B). This protein is part of the mitochondrial complex I assembly machinery. We identified changes in complex I abundance under chronic hypoxia, in association with impaired substrate-specific mitochondrial respiration. Complexome profiling of isolated mitochondria of the human leukemia monocytic cell line THP-1 revealed HIF-1α-dependent deficits in complex I assembly and mitochondrial complex I assembly complex (MCIA) abundance. Of all mitochondrial MCIA members, we proved a selective HIF-1-dependent decrease of TMEM126B under chronic hypoxia. Mechanistically, HIF-1α induces the E3-ubiquitin ligase F-box/WD repeat-containing protein 1A (β-TrCP1), which in turn facilitates the proteolytic degradation of TMEM126B. Attenuating a functional complex I assembly appears critical for cellular adaptation towards chronic hypoxia and is linked to destruction of the mitochondrial assembly factor TMEM126B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACAD9:

Acyl-CoA dehydrogenase family member 9

ADP:

Adenosine diphosphate

Akt:

RAC-alpha serine/threonine-protein kinase

ATP:

Adenosine triphosphate

ATP5a:

ATP synthase subunit alpha

β-TrCP:

F-box/WD repeat-containing protein 1A

BNE:

Blue native electrophoresis

ChIP:

Chromatin immunoprecipitation

CHX:

Cycloheximide

COX:

Cytochrome c oxidase subunit

DMOG:

Dimethyloxalylglycine

DMSO:

Dimethyl sulfoxide

ECSIT:

Evolutionarily conserved signaling intermediate in toll pathway

ETF:

Electron transfer flavoprotein

FAD:

Flavin adenine dinucleotide

FCCP:

Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone

GFP:

Green fluorescent protein

GPDH:

Glycerol-3-phosphate dehydrogenase

GSK3:

Glycogen synthase kinase-3

HIF:

Hypoxia-inducible factor

HIGD:

Hypoxia-inducible gene

IP:

Immunoprecipitation

IPTG:

Isopropyl-β-d-thiogalactopyranoside

KCN:

Potassium cyanide

LC:

Lactacystin

MCIA:

Mitochondrial complex I assembly complex

NAD:

Nicotinamide adenine dinucleotide

ND:

NADH-ubiquinone oxidoreductase chain

NDUFA:

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit

NDUFAF1:

Complex I intermediate-associated protein 30

NDUFA4L2:

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2

NDUFB:

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit

NDUFS:

NADH dehydrogenase [ubiquinone] iron–sulfur protein

OXPHOS:

Oxidative phosphorylation

PHD:

Prolyl hydroxylase

PI3K:

Phosphatidylinositol 3-kinase

rot:

Rotenone

shC:

Cells transduced with control short hairpin RNA

sh1:

Cells transduced with short hairpin RNA against HIF-1α

sh2:

Cells transduced with short hairpin RNA against HIF-2α

TIMMDC1:

Translocase of inner mitochondrial membrane domain-containing protein 1

TMEM126B:

Transmembrane protein 126B

References

  1. Scholz CC, Taylor CT (2013) Targeting the HIF pathway in inflammation and immunity. Curr Opin Pharmacol 13(4):646–653. https://doi.org/10.1016/j.coph.2013.04.009

    Article  PubMed  CAS  Google Scholar 

  2. Palazon A, Goldrath AW, Nizet V et al (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4):518–528. https://doi.org/10.1016/j.immuni.2014.09.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mucaj V, Shay JE, Simon MC (2012) Effects of hypoxia and HIFs on cancer metabolism. Int J Hematol 95(5):464–470. https://doi.org/10.1007/s12185-012-1070-5

    Article  PubMed  CAS  Google Scholar 

  4. Catrina S-B, Okamoto K, Pereira T et al (2004) Hyperglycemia regulates hypoxia-inducible factor-1 protein stability and function. Diabetes 53(12):3226–3232. https://doi.org/10.2337/diabetes.53.12.3226

    Article  PubMed  CAS  Google Scholar 

  5. Bayer C, Shi K, Astner ST et al (2011) Acute versus chronic hypoxia. Why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80(4):965–968. https://doi.org/10.1016/j.ijrobp.2011.02.049

    Article  PubMed  Google Scholar 

  6. Bayer C, Vaupel P (2012) Acute versus chronic hypoxia in tumors. Controversial data concerning time frames and biological consequences. Strahlenther Onkol 188(7):616–627. https://doi.org/10.1007/s00066-012-0085-4

    Article  PubMed  CAS  Google Scholar 

  7. Fuhrmann DC, Wittig I, Heide H et al (1834) Chronic hypoxia alters mitochondrial composition in human macrophages. Biochim Biophys Acta 12:2750–2760. https://doi.org/10.1016/j.bbapap.2013.09.023

    Article  CAS  Google Scholar 

  8. Huang LE, Gu J, Schau M et al (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95(14):7987–7992

    Article  PubMed  CAS  Google Scholar 

  9. Pugh CW, O’Rourke JF, Nagao M et al (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272(17):11205–11214

    Article  PubMed  CAS  Google Scholar 

  10. Appelhoff RJ, Tian YM, Raval RR et al (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465. https://doi.org/10.1074/jbc.M406026200

    Article  PubMed  CAS  Google Scholar 

  11. Jiang BH, Zheng JZ, Leung SW et al (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272(31):19253–19260

    Article  PubMed  CAS  Google Scholar 

  12. Berchner-Pfannschmidt U, Tug S, Kirsch M et al (2010) Oxygen-sensing under the influence of nitric oxide. Cell Signal 22(3):349–356. https://doi.org/10.1016/j.cellsig.2009.10.004

    Article  PubMed  CAS  Google Scholar 

  13. Kapitsinou PP, Rajendran G, Astleford L et al (2016) The endothelial PHD2/HIF-2 axis regulates pulmonary artery pressure in mice. Mol Cell Biol. https://doi.org/10.1128/MCB.01055-15

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fuhrmann DC, Tausendschon M, Wittig I et al (2015) Inactivation of tristetraprolin in chronic hypoxia provokes the expression of cathepsin B. Mol Cell Biol 35(3):619–630. https://doi.org/10.1128/mcb.01034-14

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069. https://doi.org/10.1146/annurev.bi.54.070185.005055

    Article  PubMed  CAS  Google Scholar 

  16. Brandt U (2006) Energy converting NADH. Quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92. https://doi.org/10.1146/annurev.biochem.75.103004.142539

    Article  PubMed  CAS  Google Scholar 

  17. Janssen RJ, Nijtmans LG, van den Heuvel LP et al (2006) Mitochondrial complex I. Structure, function and pathology. J Inherit Metab Dis 29(4):499–515. https://doi.org/10.1007/s10545-006-0362-4

    Article  PubMed  CAS  Google Scholar 

  18. Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R et al (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340(6140):1567–1570. https://doi.org/10.1126/science.1230381

    Article  PubMed  CAS  Google Scholar 

  19. Lee I, Bender E, Kadenbach B (2002) Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem 234–235(1–2):63–70

    Article  PubMed  Google Scholar 

  20. Fuhrmann DC, Brune B (2017) Mitochondrial composition and function under the control of hypoxia. Redox Biol 12:208–215. https://doi.org/10.1016/j.redox.2017.02.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405(1):1–9. https://doi.org/10.1042/bj20070389

    Article  PubMed  CAS  Google Scholar 

  22. Tello D, Balsa E, Acosta-Iborra B et al (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting complex I activity. Cell Metab 14(6):768–779. https://doi.org/10.1016/j.cmet.2011.10.008

    Article  PubMed  CAS  Google Scholar 

  23. Lai RK, Xu IM, Chiu DK et al (2016) NDUFA4L2 fine-tunes oxidative stress in hepatocellular carcinoma. Clin Cancer Res 22(12):3105–3117. https://doi.org/10.1158/1078-0432.ccr-15-1987

    Article  PubMed  CAS  Google Scholar 

  24. Li J, Bai C, Guo J et al (2017) NDUFA4L2 protects against ischaemia/reperfusion-induced cardiomyocyte apoptosis and mitochondrial dysfunction by inhibiting complex I. Clin Exp Pharmacol Physiol 44(7):779–786. https://doi.org/10.1111/1440-1681.12768

    Article  PubMed  CAS  Google Scholar 

  25. Hernansanz-Agustín P, Ramos E, Navarro E et al (2017) Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol 12:1040–1051. https://doi.org/10.1016/j.redox.2017.04.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Papandreou I, Cairns RA, Fontana L et al (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197. https://doi.org/10.1016/j.cmet.2006.01.012

    Article  PubMed  CAS  Google Scholar 

  27. Schagger H, de Coo R, Bauer MF et al (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279(35):36349–36353. https://doi.org/10.1074/jbc.M404033200

    Article  PubMed  CAS  Google Scholar 

  28. Acin-Perez R, Fernandez-Silva P, Peleato ML et al (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32(4):529–539. https://doi.org/10.1016/j.molcel.2008.10.021

    Article  PubMed  CAS  Google Scholar 

  29. Maranzana E, Barbero G, Falasca AI et al (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19(13):1469–1480. https://doi.org/10.1089/ars.2012.4845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19(8):1777–1783. https://doi.org/10.1093/emboj/19.8.1777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 4:427–443. https://doi.org/10.1016/j.bbabio.2013.11.002

    Article  CAS  Google Scholar 

  32. Dieteren CE, Willems PH, Vogel RO et al (2008) Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J Biol Chem 283(50):34753–34761. https://doi.org/10.1074/jbc.M807323200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. McKenzie M, Ryan MT (2010) Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life 62(7):497–502. https://doi.org/10.1002/iub.335

    Article  PubMed  CAS  Google Scholar 

  34. Guerrero-Castillo S, Baertling F, Kownatzki D et al (2017) The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab 25(1):128–139. https://doi.org/10.1016/j.cmet.2016.09.002

    Article  PubMed  CAS  Google Scholar 

  35. Vogel RO, Janssen RJ, Ugalde C et al (2005) Human mitochondrial complex I assembly is mediated by NDUFAF1. FEBS J 272(20):5317–5326. https://doi.org/10.1111/j.1742-4658.2005.04928.x

    Article  PubMed  CAS  Google Scholar 

  36. Nouws J, Nijtmans L, Houten SM et al (2010) Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12(3):283–294. https://doi.org/10.1016/j.cmet.2010.08.002

    Article  PubMed  CAS  Google Scholar 

  37. Lazarou M, Thorburn DR, Ryan MT et al (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793(1):78–88. https://doi.org/10.1016/j.bbamcr.2008.04.015

    Article  PubMed  CAS  Google Scholar 

  38. Heide H, Bleier L, Steger M et al (2012) Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab 16(4):538–549. https://doi.org/10.1016/j.cmet.2012.08.009

    Article  PubMed  CAS  Google Scholar 

  39. Andrews B, Carroll J, Ding S et al (2013) Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci USA 110(47):18934–18939. https://doi.org/10.1073/pnas.1319247110

    Article  PubMed  CAS  Google Scholar 

  40. Guarani V, Paulo J, Zhai B et al (2014) TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex. Mol Cell Biol 34(5):847–861. https://doi.org/10.1128/mcb.01551-13

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hayashi T, Asano Y, Shintani Y et al (2015) Higd1a is a positive regulator of cytochrome c oxidase. Proc Natl Acad Sci USA 112(5):1553–1558. https://doi.org/10.1073/pnas.1419767112

    Article  PubMed  CAS  Google Scholar 

  42. Vidoni S, Harbour ME, Guerrero-Castillo S et al (2017) MR-1S interacts with PET100 and PET117 in module-based assembly of human cytochrome c oxidase. Cell Rep 18(7):1727–1738. https://doi.org/10.1016/j.celrep.2017.01.044

    Article  PubMed  CAS  Google Scholar 

  43. Vukotic M, Oeljeklaus S, Wiese S et al (2012) Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 15(3):336–347. https://doi.org/10.1016/j.cmet.2012.01.016

    Article  PubMed  CAS  Google Scholar 

  44. Tausendschon M, Rehli M, Dehne N et al (1849) Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10. Biochim Biophys Acta 1:10–22. https://doi.org/10.1016/j.bbagrm.2014.10.006

    Article  CAS  Google Scholar 

  45. Guo J, Chakraborty A, Liu P et al (2016) pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science 353(6302):929–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Haack TB, Danhauser K, Haberberger B et al (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 42(12):1131–1134. https://doi.org/10.1038/ng.706

    Article  PubMed  CAS  Google Scholar 

  47. Dunning CJ, McKenzie M, Sugiana C et al (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26(13):3227–3237. https://doi.org/10.1038/sj.emboj.7601748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Nouws J, Nijtmans LG, Smeitink JA et al (2012) Assembly factors as a new class of disease genes for mitochondrial complex I deficiency. Cause, pathology and treatment options. Brain 135(Pt 1):12–22. https://doi.org/10.1093/brain/awr261

    Article  PubMed  Google Scholar 

  49. Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409(1):19–26. https://doi.org/10.1042/bj20071249

    Article  PubMed  CAS  Google Scholar 

  50. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17. https://doi.org/10.1634/theoncologist.9-90005-10

    Article  PubMed  CAS  Google Scholar 

  51. Fukuda R, Zhang H, Kim JW et al (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129(1):111–122. https://doi.org/10.1016/j.cell.2007.01.047

    Article  PubMed  CAS  Google Scholar 

  52. Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22(2):204–206. https://doi.org/10.1016/j.cmet.2015.05.013

    Article  PubMed  CAS  Google Scholar 

  53. El Kasmi KC, Stenmark KR (2015) Contribution of metabolic reprogramming to macrophage plasticity and function. Semin Immunol 27(4):267–275. https://doi.org/10.1016/j.smim.2015.09.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tan Z, Xie N, Cui H et al (2015) Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol 194(12):6082–6089. https://doi.org/10.4049/jimmunol.1402469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tannahill GM, Iraci N, Gaude E et al (2015) Metabolic reprogramming of mononuclear phagocytes in progressive multiple sclerosis. Front Immunol 6:106. https://doi.org/10.3389/fimmu.2015.00106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43(3):435–449. https://doi.org/10.1016/j.immuni.2015.09.001

    Article  PubMed  CAS  Google Scholar 

  57. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jin Z, Wei W, Yang M et al (2014) Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab 20(3):483–498. https://doi.org/10.1016/j.cmet.2014.07.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1(1):418–428. https://doi.org/10.1038/nprot.2006.62

    Article  PubMed  CAS  Google Scholar 

  60. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  PubMed  CAS  Google Scholar 

  61. Giese H, Ackermann J, Heide H et al (2015) NOVA. A software to analyze complexome profiling data. Bioinformatics 31(3):440–441. https://doi.org/10.1093/bioinformatics/btu623

    Article  PubMed  CAS  Google Scholar 

  62. Schwanhausser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Article  PubMed  CAS  Google Scholar 

  63. Wirth C, Brandt U, Hunte C et al (2016) Structure and function of mitochondrial complex I. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2016.02.013

    Article  PubMed  Google Scholar 

  64. Moreno-Lastres D, Fontanesi F, Garcia-Consuegra I et al (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15(3):324–335. https://doi.org/10.1016/j.cmet.2012.01.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tanja Keppler for excellent technical assistance, Jana Meisterknecht for competent support with BNE and 2D-BNE/SDS gels, and Ilka Siebels for technical assistance in respiration measurements.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft [SFB 815, project Z1 (I.W.) and project A8 (B.B.)].

Author information

Authors and Affiliations

Authors

Contributions

DF performed and planed the experiments and wrote the paper. IW performed complexome profiling and participated on paper writing. SD performed respiratory measurements. TS gave his expertise concerning β-TrCP experiments ND discussed data and literature. BB performed data interpretation, wrote the paper, and designed the project.

Corresponding author

Correspondence to Bernhard Brüne.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 938 kb)

Supplementary material 2 (PDF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuhrmann, D.C., Wittig, I., Dröse, S. et al. Degradation of the mitochondrial complex I assembly factor TMEM126B under chronic hypoxia. Cell. Mol. Life Sci. 75, 3051–3067 (2018). https://doi.org/10.1007/s00018-018-2779-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2779-y

Keywords

Navigation