Skip to main content

Advertisement

Log in

Molecular recognition of microbial lipid-based antigens by T cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miles JJ, McCluskey J, Rossjohn J, Gras S (2015) Understanding the complexity and malleability of T-cell recognition. Immunol Cell Biol 93(5):433–441. https://doi.org/10.1038/icb.2014.112

    Article  CAS  PubMed  Google Scholar 

  2. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J (2015) T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 33:169–200. https://doi.org/10.1146/annurev-immunol-032414-112334

    Article  CAS  PubMed  Google Scholar 

  3. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta + T cells. Nature 372(6507):691–694. https://doi.org/10.1038/372691a0

    Article  CAS  PubMed  Google Scholar 

  4. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. https://doi.org/10.1038/nature11605

    Article  CAS  PubMed  Google Scholar 

  5. Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R, Beddoe T, Corbett AJ, Liu L, Miles JJ, Meehan B, Reantragoon R, Sandoval-Romero ML, Sullivan LC, Brooks AG, Chen Z, Fairlie DP, McCluskey J, Rossjohn J (2013) Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nature Commun 4:2142. https://doi.org/10.1038/ncomms3142

    Article  CAS  Google Scholar 

  6. Adams EJ, Luoma AM (2013) The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 31:529–561. https://doi.org/10.1146/annurev-immunol-032712-095912

    Article  CAS  PubMed  Google Scholar 

  7. Van Rhijn I, Godfrey DI, Rossjohn J, Moody DB (2015) Lipid and small-molecule display by CD1 and MR1. Nat Rev Immunol 15(10):643–654. https://doi.org/10.1038/nri3889

    Article  PubMed  CAS  Google Scholar 

  8. Zajonc DM, Flajnik MF (2016) CD1, MR1, NKT, and MAIT: evolution and origins of non-peptidic antigen recognition by T lymphocytes. Immunogenetics 68(8):489–490. https://doi.org/10.1007/s00251-016-0941-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123. https://doi.org/10.1038/ni.3298

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Alles LF, Giacometti G, Versluis C, Maveyraud L, de Paepe D, Guiard J, Tranier S, Gilleron M, Prandi J, Hanau D, Heck AJ, Mori L, De Libero G, Puzo G, Mourey L, de la Salle H (2011) Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes. Proc Natl Acad Sci USA 108(32):13230–13235. https://doi.org/10.1073/pnas.1105627108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zajonc DM (2016) The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics 68(8):561–576. https://doi.org/10.1007/s00251-016-0931-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moody DB, Zajonc DM, Wilson IA (2005) Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol 5(5):387–399. https://doi.org/10.1038/nri1605

    Article  CAS  PubMed  Google Scholar 

  13. Smith ME, Thomas JA, Bodmer WF (1988) CD1c antigens are present in normal and neoplastic B-cells. J Pathol 156(2):169–177. https://doi.org/10.1002/path.1711560212

    Article  CAS  PubMed  Google Scholar 

  14. Pena-Cruz V, Ito S, Oukka M, Yoneda K, Dascher CC, Von Lichtenberg F, Sugita M (2001) Extraction of human Langerhans cells: a method for isolation of epidermis-resident dendritic cells. J Immunol Methods 255(1–2):83–91

    Article  CAS  PubMed  Google Scholar 

  15. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360(6401):258–261. https://doi.org/10.1038/360258a0

    Article  CAS  PubMed  Google Scholar 

  16. de Jong A, Cheng TY, Huang S, Gras S, Birkinshaw RW, Kasmar AG, Van Rhijn I, Pena-Cruz V, Ruan DT, Altman JD, Rossjohn J, Moody DB (2014) CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat Immunol 15(2):177–185. https://doi.org/10.1038/ni.2790

    Article  PubMed  CAS  Google Scholar 

  17. de Jong A, Pena-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB (2010) CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat Immunol 11(12):1102–1109. https://doi.org/10.1038/ni.1956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ly D, Moody DB (2014) The CD1 size problem: lipid antigens, ligands, and scaffolds. Cell Mol Life Sci CMLS 71(16):3069–3079. https://doi.org/10.1007/s00018-014-1603-6

    Article  CAS  PubMed  Google Scholar 

  19. Skold M, Behar SM (2003) Role of CD1d-restricted NKT cells in microbial immunity. Infect Immun 71(10):5447–5455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Godfrey DI, McCluskey J, Rossjohn J (2005) CD1d antigen presentation: treats for NKT cells. Nat Immunol 6(8):754–756. https://doi.org/10.1038/ni0805-754

    Article  CAS  PubMed  Google Scholar 

  21. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–237. https://doi.org/10.1038/nri1309

    Article  CAS  PubMed  Google Scholar 

  22. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629

    Article  CAS  PubMed  Google Scholar 

  23. Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12(12):845–857. https://doi.org/10.1038/nri3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patel O, Pellicci DG, Gras S, Sandoval-Romero ML, Uldrich AP, Mallevaey T, Clarke AJ, Le Nours J, Theodossis A, Cardell SL, Gapin L, Godfrey DI, Rossjohn J (2012) Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat Immunol 13(9):857–863. https://doi.org/10.1038/ni.2372

    Article  CAS  PubMed  Google Scholar 

  25. Girardi E, Maricic I, Wang J, Mac TT, Iyer P, Kumar V, Zajonc DM (2012) Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat Immunol 13(9):851–856. https://doi.org/10.1038/ni.2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890. https://doi.org/10.1146/annurev.immunol.22.012703.104608

    Article  CAS  PubMed  Google Scholar 

  27. Uldrich AP, Patel O, Cameron G, Pellicci DG, Day EB, Sullivan LC, Kyparissoudis K, Kjer-Nielsen L, Vivian JP, Cao B, Brooks AG, Williams SJ, Illarionov P, Besra GS, Turner SJ, Porcelli SA, McCluskey J, Smyth MJ, Rossjohn J, Godfrey DI (2011) A semi-invariant Valpha10 + T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties. Nat Immunol 12(7):616–623. https://doi.org/10.1038/ni.2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pellicci DG, Uldrich AP, Le Nours J, Ross F, Chabrol E, Eckle SB, de Boer R, Lim RT, McPherson K, Besra G, Howell AR, Moretta L, McCluskey J, Heemskerk MH, Gras S, Rossjohn J, Godfrey DI (2014) The molecular bases of delta/alphabeta T cell-mediated antigen recognition. J Exp Med 211(13):2599–2615. https://doi.org/10.1084/jem.20141764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zajonc DM, Girardi E (2014) A gammadelta T-cell glimpse of glycolipids. Immunol Cell Biol 92(2):99–100. https://doi.org/10.1038/icb.2013.83

    Article  CAS  PubMed  Google Scholar 

  30. Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J, Godfrey DI (2013) CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol 14(11):1137–1145. https://doi.org/10.1038/ni.2713

    Article  CAS  PubMed  Google Scholar 

  31. Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ (2013) Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human gammadelta T cells. Immunity 39(6):1032–1042. https://doi.org/10.1016/j.immuni.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  32. Koch M, Stronge VS, Shepherd D, Gadola SD, Mathew B, Ritter G, Fersht AR, Besra GS, Schmidt RR, Jones EY, Cerundolo V (2005) The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat Immunol 6(8):819–826. https://doi.org/10.1038/ni1225

    Article  CAS  PubMed  Google Scholar 

  33. Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277(5324):339–345

    Article  CAS  PubMed  Google Scholar 

  34. Kinjo Y, Ueno K (2011) iNKT cells in microbial immunity: recognition of microbial glycolipids. Microbiol Immunol 55(7):472–482. https://doi.org/10.1111/j.1348-0421.2011.00338.x

    Article  CAS  PubMed  Google Scholar 

  35. Zajonc DM, Girardi E (2015) Recognition of microbial glycolipids by natural killer T cells. Front Immunol 6:400. https://doi.org/10.3389/fimmu.2015.00400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Van Kaer L, Parekh VV, Wu L (2015) The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products. Front Immunol 6:226. https://doi.org/10.3389/fimmu.2015.00226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 101(29):10685–10690. https://doi.org/10.1073/pnas.0403787101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol 22(2):68–78. https://doi.org/10.1016/j.smim.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  39. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7(9):978–986. https://doi.org/10.1038/ni1380

    Article  CAS  PubMed  Google Scholar 

  40. An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, Lu X, Zeissig S, Blumberg RS, Kasper DL (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156(1–2):123–133. https://doi.org/10.1016/j.cell.2013.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, Sonnenburg JL, Comstock LE, Bluestone JA, Fischbach MA (2013) Production of alpha-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol 11(7):e1001610. https://doi.org/10.1371/journal.pbio.1001610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434(7032):525–529. https://doi.org/10.1038/nature03408

    Article  CAS  PubMed  Google Scholar 

  43. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434(7032):520–525. https://doi.org/10.1038/nature03407

    Article  CAS  PubMed  Google Scholar 

  44. Kawahara K, Moll H, Knirel YA, Seydel U, Zahringer U (2000) Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur J Biochem/FEBS 267(6):1837–1846

    Article  CAS  Google Scholar 

  45. Florence WC, Bhat RK, Joyce S (2008) CD1d-restricted glycolipid antigens: presentation principles, recognition logic and functional consequences. Expert Rev Mol Med 10:e20. https://doi.org/10.1017/S1462399408000732

    Article  PubMed  Google Scholar 

  46. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG, Koh R, Besra GS, Bharadwaj M, Godfrey DI, McCluskey J, Rossjohn J (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448(7149):44–49. https://doi.org/10.1038/nature05907

    Article  CAS  PubMed  Google Scholar 

  47. Pellicci DG, Patel O, Kjer-Nielsen L, Pang SS, Sullivan LC, Kyparissoudis K, Brooks AG, Reid HH, Gras S, Lucet IS, Koh R, Smyth MJ, Mallevaey T, Matsuda JL, Gapin L, McCluskey J, Godfrey DI, Rossjohn J (2009) Differential recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell receptors. Immunity 31(1):47–59. https://doi.org/10.1016/j.immuni.2009.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci USA 103(11):3972–3977. https://doi.org/10.1073/pnas.0600285103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olson CM Jr, Bates TC, Izadi H, Radolf JD, Huber SA, Boyson JE, Anguita J (2009) Local production of IFN-gamma by invariant NKT cells modulates acute Lyme carditis. J Immunol 182(6):3728–3734. https://doi.org/10.4049/jimmunol.0804111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang J, Li Y, Kinjo Y, Mac TT, Gibson D, Painter GF, Kronenberg M, Zajonc DM (2010) Lipid binding orientation within CD1d affects recognition of Borrelia burgdorferi antigens by NKT cells. Proc Natl Acad Sci USA 107(4):1535–1540. https://doi.org/10.1073/pnas.0909479107

    Article  CAS  PubMed  Google Scholar 

  51. Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, Li Y, Imamura M, Kaneko Y, Okawara A, Miyazaki Y, Gomez-Velasco A, Rogers P, Dahesh S, Uchiyama S, Khurana A, Kawahara K, Yesilkaya H, Andrew PW, Wong CH, Kawakami K, Nizet V, Besra GS, Tsuji M, Zajonc DM, Kronenberg M (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12(10):966–974. https://doi.org/10.1038/ni.2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mallevaey T, Clarke AJ, Scott-Browne JP, Young MH, Roisman LC, Pellicci DG, Patel O, Vivian JP, Matsuda JL, McCluskey J, Godfrey DI, Marrack P, Rossjohn J, Gapin L (2011) A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34(3):315–326. https://doi.org/10.1016/j.immuni.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zajonc DM, Ainge GD, Painter GF, Severn WB, Wilson IA (2006) Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d. J Immunol 177(7):4577–4583

    Article  CAS  PubMed  Google Scholar 

  54. Giabbai B, Sidobre S, Crispin MD, Sanchez-Ruiz Y, Bachi A, Kronenberg M, Wilson IA, Degano M (2005) Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J Immunol 175(2):977–984

    Article  CAS  PubMed  Google Scholar 

  55. Lotter H, Gonzalez-Roldan N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5(5):e1000434. https://doi.org/10.1371/journal.ppat.1000434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hirai Y, Haque M, Yoshida T, Yokota K, Yasuda T, Oguma K (1995) Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol 177(18):5327–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ito Y, Vela JL, Matsumura F, Hoshino H, Tyznik A, Lee H, Girardi E, Zajonc DM, Liddington R, Kobayashi M, Bao X, Bugaytsova J, Boren T, Jin R, Zong Y, Seeberger PH, Nakayama J, Kronenberg M, Fukuda M (2013) Helicobacter pylori cholesteryl alpha-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS One 8(12):e78191. https://doi.org/10.1371/journal.pone.0078191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chang YJ, Kim HY, Albacker LA, Lee HH, Baumgarth N, Akira S, Savage PB, Endo S, Yamamura T, Maaskant J, Kitano N, Singh A, Bhatt A, Besra GS, van den Elzen P, Appelmelk B, Franck RW, Chen G, DeKruyff RH, Shimamura M, Illarionov P, Umetsu DT (2011) Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J Clin Investig 121(1):57–69. https://doi.org/10.1172/JCI44845

    Article  CAS  PubMed  Google Scholar 

  59. Tatituri RV, Watts GF, Bhowruth V, Barton N, Rothchild A, Hsu FF, Almeida CF, Cox LR, Eggeling L, Cardell S, Rossjohn J, Godfrey DI, Behar SM, Besra GS, Brenner MB, Brigl M (2013) Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci USA 110(5):1827–1832. https://doi.org/10.1073/pnas.1220601110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wolf BJ, Tatituri RV, Almeida CF, Le Nours J, Bhowruth V, Johnson D, Uldrich AP, Hsu FF, Brigl M, Besra GS, Rossjohn J, Godfrey DI, Brenner MB (2015) Identification of a potent microbial lipid antigen for diverse NKT cells. J Immunol 195(6):2540–2551. https://doi.org/10.4049/jimmunol.1501019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Y, Girardi E, Wang J, Yu ED, Painter GF, Kronenberg M, Zajonc DM (2010) The Valpha14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J Exp Med 207(11):2383–2393. https://doi.org/10.1084/jem.20101335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Girardi E, Yu ED, Li Y, Tarumoto N, Pei B, Wang J, Illarionov P, Kinjo Y, Kronenberg M, Zajonc DM (2011) Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells. PLoS Biol 9(11):e1001189. https://doi.org/10.1371/journal.pbio.1001189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pellicci DG, Clarke AJ, Patel O, Mallevaey T, Beddoe T, Le Nours J, Uldrich AP, McCluskey J, Besra GS, Porcelli SA, Gapin L, Godfrey DI, Rossjohn J (2011) Recognition of beta-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat Immunol 12(9):827–833. https://doi.org/10.1038/ni.2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Girardi E, Zajonc DM (2012) Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 250(1):167–179. https://doi.org/10.1111/j.1600-065X.2012.01166.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. De Silva AD, Park JJ, Matsuki N, Stanic AK, Brutkiewicz RR, Medof ME, Joyce S (2002) Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J Immunol 168(2):723–733

    Article  PubMed  Google Scholar 

  66. Garcia-Alles LF, Versluis K, Maveyraud L, Vallina AT, Sansano S, Bello NF, Gober HJ, Guillet V, de la Salle H, Puzo G, Mori L, Heck AJ, De Libero G, Mourey L (2006) Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b. EMBO J 25(15):3684–3692. https://doi.org/10.1038/sj.emboj.7601244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang S, Cheng TY, Young DC, Layre E, Madigan CA, Shires J, Cerundolo V, Altman JD, Moody DB (2011) Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proc Natl Acad Sci USA 108(48):19335–19340. https://doi.org/10.1073/pnas.1112969108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shamshiev A, Donda A, Prigozy TI, Mori L, Chigorno V, Benedict CA, Kappos L, Sonnino S, Kronenberg M, De Libero G (2000) The alphabeta T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13(2):255–264

    Article  CAS  PubMed  Google Scholar 

  69. Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, Geho DH, Tykocinski ML, Besra GS, Porcelli SA (2002) Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat Immunol 3(5):435–442. https://doi.org/10.1038/ni780

    Article  CAS  PubMed  Google Scholar 

  70. Manolova V, Kistowska M, Paoletti S, Baltariu GM, Bausinger H, Hanau D, Mori L, De Libero G (2006) Functional CD1a is stabilized by exogenous lipids. Eur J Immunol 36(5):1083–1092. https://doi.org/10.1002/eji.200535544

    Article  CAS  PubMed  Google Scholar 

  71. Briken V, Jackman RM, Watts GF, Rogers RA, Porcelli SA (2000) Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J Exp Med 192(2):281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sugita M, van Der WN, Rogers RA, Peters PJ, Brenner MB (2000) CD1c molecules broadly survey the endocytic system. Proc Natl Acad Sci USA 97(15):8445–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Briken V, Jackman RM, Dasgupta S, Hoening S, Porcelli SA (2002) Intracellular trafficking pathway of newly synthesized CD1b molecules. EMBO J 21(4):825–834. https://doi.org/10.1093/emboj/21.4.825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moody DB, Porcelli SA (2003) Intracellular pathways of CD1 antigen presentation. Nat Rev Immunol 3(1):11–22

    Article  CAS  PubMed  Google Scholar 

  75. Cheng TY, Relloso M, Van Rhijn I, Young DC, Besra GS, Briken V, Zajonc DM, Wilson IA, Porcelli S, Moody DB (2006) Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO J 25(13):2989–2999. https://doi.org/10.1038/sj.emboj.7601185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ly D, Kasmar AG, Cheng TY, de Jong A, Huang S, Roy S, Bhatt A, van Summeren RP, Altman JD, Jacobs WR Jr, Adams EJ, Minnaard AJ, Porcelli SA, Moody DB (2013) CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. J Exp Med 210(4):729–741. https://doi.org/10.1084/jem.20120624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404(6780):884–888

    Article  CAS  PubMed  Google Scholar 

  78. de Jong A, Arce EC, Cheng TY, van Summeren RP, Feringa BL, Dudkin V, Crich D, Matsunaga I, Minnaard AJ, Moody DB (2007) CD1c presentation of synthetic glycolipid antigens with foreign alkyl branching motifs. Chem Biol 14(11):1232–1242. https://doi.org/10.1016/j.chembiol.2007.09.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. de la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF, Malm D, Berg T, Paoletti S, Maitre B, Mourey L, Salamero J, Cazenave JP, Hanau D, Mori L, Puzo G, De Libero G (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310(5752):1321–1324. https://doi.org/10.1126/science.1115301

    Article  PubMed  CAS  Google Scholar 

  80. Gilleron M, Lepore M, Layre E, Cala-De Paepe D, Mebarek N, Shayman JA, Canaan S, Mori L, Carriere F, Puzo G, De Libero G (2016) Lysosomal lipases PLRP2 and LPLA2 process mycobacterial multi-acylated lipids and generate T cell stimulatory antigens. Cell Chem Biol 23(9):1147–1156. https://doi.org/10.1016/j.chembiol.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  81. Prigozy TI, Naidenko O, Qasba P, Elewaut D, Brossay L, Khurana A, Natori T, Koezuka Y, Kulkarni A, Kronenberg M (2001) Glycolipid antigen processing for presentation by CD1d molecules. Science 291(5504):664–667. https://doi.org/10.1126/science.291.5504.664

    Article  CAS  PubMed  Google Scholar 

  82. Relloso M, Cheng TY, Im JS, Parisini E, Roura-Mir C, DeBono C, Zajonc DM, Murga LF, Ondrechen MJ, Wilson IA, Porcelli SA, Moody DB (2008) pH-dependent interdomain tethers of CD1b regulate its antigen capture. Immunity 28(6):774–786. https://doi.org/10.1016/j.immuni.2008.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brozovic S, Nagaishi T, Yoshida M, Betz S, Salas A, Chen D, Kaser A, Glickman J, Kuo T, Little A, Morrison J, Corazza N, Kim JY, Colgan SP, Young SG, Exley M, Blumberg RS (2004) CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 10(5):535–539. https://doi.org/10.1038/nm1043

    Article  CAS  PubMed  Google Scholar 

  84. Zhou D, Cantu C 3rd, Sagiv Y, Schrantz N, Kulkarni AB, Qi X, Mahuran DJ, Morales CR, Grabowski GA, Benlagha K, Savage P, Bendelac A, Teyton L (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303(5657):523–527. https://doi.org/10.1126/science.1092009

    Article  CAS  PubMed  Google Scholar 

  85. Yuan W, Qi X, Tsang P, Kang SJ, Illarionov PA, Besra GS, Gumperz J, Cresswell P (2007) Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci USA 104(13):5551–5556. https://doi.org/10.1073/pnas.0700617104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Winau F, Schwierzeck V, Hurwitz R, Remmel N, Sieling PA, Modlin RL, Porcelli SA, Brinkmann V, Sugita M, Sandhoff K, Kaufmann SH, Schaible UE (2004) Saposin C is required for lipid presentation by human CD1b. Nat Immunol 5(2):169–174. https://doi.org/10.1038/ni1035

    Article  CAS  PubMed  Google Scholar 

  87. Cala-De Paepe D, Layre E, Giacometti G, Garcia-Alles LF, Mori L, Hanau D, de Libero G, de la Salle H, Puzo G, Gilleron M (2012) Deciphering the role of CD1e protein in mycobacterial phosphatidyl-myo-inositol mannosides (PIM) processing for presentation by CD1b to T lymphocytes. J Biol Chem 287(37):31494–31502. https://doi.org/10.1074/jbc.M112.386300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grant EP, Degano M, Rosat JP, Stenger S, Modlin RL, Wilson IA, Porcelli SA, Brenner MB (1999) Molecular recognition of lipid antigens by T cell receptors. J Exp Med 189(1):195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Van Rhijn I, Young DC, Im JS, Levery SB, Illarionov PA, Besra GS, Porcelli SA, Gumperz J, Cheng TY, Moody DB (2004) CD1d-restricted T cell activation by nonlipidic small molecules. Proc Natl Acad Sci USA 101(37):13578–13583. https://doi.org/10.1073/pnas.0402838101

    Article  PubMed  PubMed Central  Google Scholar 

  90. Van Rhijn I, Kasmar A, de Jong A, Gras S, Bhati M, Doorenspleet ME, de Vries N, Godfrey DI, Altman JD, de Jager W, Rossjohn J, Moody DB (2013) A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat Immunol 14(7):706–713. https://doi.org/10.1038/ni.2630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Van Rhijn I, Gherardin NA, Kasmar A, de Jager W, Pellicci DG, Kostenko L, Tan LL, Bhati M, Gras S, Godfrey DI, Rossjohn J, Moody DB (2014) TCR bias and affinity define two compartments of the CD1b-glycolipid-specific T cell repertoire. J Immunol 193(10):5338–5344. https://doi.org/10.4049/jimmunol.1400158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Turner SJ, Doherty PC, McCluskey J, Rossjohn J (2006) Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 6(12):883–894. https://doi.org/10.1038/nri1977

    Article  CAS  PubMed  Google Scholar 

  93. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB (2000) Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 191(6):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Russano AM, Bassotti G, Agea E, Bistoni O, Mazzocchi A, Morelli A, Porcelli SA, Spinozzi F (2007) CD1-restricted recognition of exogenous and self-lipid antigens by duodenal gammadelta + T lymphocytes. J Immunol 178(6):3620–3626

    Article  CAS  PubMed  Google Scholar 

  95. Roy S, Ly D, Castro CD, Li NS, Hawk AJ, Altman JD, Meredith SC, Piccirilli JA, Moody DB, Adams EJ (2016) Molecular analysis of lipid-reactive vdelta1 gammadelta T cells identified by CD1c tetramers. J Immunol 196(4):1933–1942. https://doi.org/10.4049/jimmunol.1502202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kasmar A, Van Rhijn I, Magalhaes KG, Young D, Cheng TY, Turner M, Schiefner A, Kalathur RC, Wilson A, Bhati M, Gras S, Rossjohn J, Shires J, Jakobsen S, Altman JD, Moody DB (2013) CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J Immunol 191:4499–4503

    Article  CAS  PubMed  Google Scholar 

  97. Van Rhijn I, Iwany SK, Fodran P, Cheng TY, Gapin L, Minnaard AJ, Moody DB (2017) CD1b-mycolic acid tetramers demonstrate T-cell fine specificity for mycobacterial lipid tails. Eur J Immunol. https://doi.org/10.1002/eji.201747062

    Article  PubMed  PubMed Central  Google Scholar 

  98. Seshadri C, Lin L, Scriba TJ, Peterson G, Freidrich D, Frahm N, DeRosa SC, Moody DB, Prandi J, Gilleron M, Mahomed H, Jiang W, Finak G, Hanekom WA, Gottardo R, McElrath MJ, Hawn TR (2015) T cell responses against mycobacterial lipids and proteins are poorly correlated in South African adolescents. J Immunol 195(10):4595–4603. https://doi.org/10.4049/jimmunol.1501285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Felio K, Nguyen H, Dascher CC, Choi HJ, Li S, Zimmer MI, Colmone A, Moody DB, Brenner MB, Wang CR (2009) CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J Exp Med 206(11):2497–2509. https://doi.org/10.1084/jem.20090898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dascher CC, Hiromatsu K, Xiong X, Morehouse C, Watts G, Liu G, McMurray DN, LeClair KP, Porcelli SA, Brenner MB (2003) Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int Immunol 15(8):915–925

    Article  CAS  PubMed  Google Scholar 

  101. Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360(6404):593–597. https://doi.org/10.1038/360593a0

    Article  CAS  PubMed  Google Scholar 

  102. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404(6780):884–888. https://doi.org/10.1038/35009119

    Article  CAS  PubMed  Google Scholar 

  103. Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ et al (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269(5221):227–230

    Article  CAS  PubMed  Google Scholar 

  104. Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D, Moody DB, Besra GS, Watanabe Y, Jensen PE, Porcelli SA, Kronenberg M, Modlin RL (1998) Molecular interaction of CD1b with lipoglycan antigens. Immunity 8(3):331–340

    Article  CAS  PubMed  Google Scholar 

  105. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18(1):81–101. https://doi.org/10.1128/CMR.18.1.81-101.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grant EP, Beckman EM, Behar SM, Degano M, Frederique D, Besra GS, Wilson IA, Porcelli SA, Furlong ST, Brenner MB (2002) Fine specificity of TCR complementarity-determining region residues and lipid antigen hydrophilic moieties in the recognition of a CD1-lipid complex. J Immunol 168(8):3933–3940

    Article  CAS  PubMed  Google Scholar 

  107. Moody DB, Reinhold BB, Guy MR, Beckman EM, Frederique DE, Furlong ST, Ye S, Reinhold VN, Sieling PA, Modlin RL, Besra GS, Porcelli SA (1997) Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278(5336):283–286

    Article  CAS  PubMed  Google Scholar 

  108. Van Rhijn I, Kasmar A, de Jong A, Gras S, Bhati M, Doorenspleet ME, de Vries N, Godfrey DI, Altman JD, de Jager W, Rossjohn J, Moody DB (2013) A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat Immunol 14(7):706–713. https://doi.org/10.1038/ni.2630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Van Rhijn I, Moody DB (2015) CD1 and mycobacterial lipids activate human T cells. Immunol Rev 264(1):138–153. https://doi.org/10.1111/imr.12253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Layre E, Collmann A, Bastian M, Mariotti S, Czaplicki J, Prandi J, Mori L, Stenger S, De Libero G, Puzo G, Gilleron M (2009) Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem Biol 16(1):82–92. https://doi.org/10.1016/j.chembiol.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  111. Kasmar AG, van Rhijn I, Cheng TY, Turner M, Seshadri C, Schiefner A, Kalathur RC, Annand JW, de Jong A, Shires J, Leon L, Brenner M, Wilson IA, Altman JD, Moody DB (2011) CD1b tetramers bind alphabeta T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J Exp Med 208(9):1741–1747. https://doi.org/10.1084/jem.20110665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gras S, Van Rhijn I, Shahine A, Cheng TY, Bhati M, Tan LL, Halim H, Tuttle KD, Gapin L, Le Nours J, Moody DB, Rossjohn J (2016) T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nat Commun 7:13257. https://doi.org/10.1038/ncomms13257

    Article  PubMed  PubMed Central  Google Scholar 

  113. Batuwangala T, Shepherd D, Gadola SD, Gibson KJ, Zaccai NR, Fersht AR, Besra GS, Cerundolo V, Jones EY (2004) The crystal structure of human CD1b with a bound bacterial glycolipid. J Immunol 172(4):2382–2388

    Article  CAS  PubMed  Google Scholar 

  114. Garcia-Alles LF, Collmann A, Versluis C, Lindner B, Guiard J, Maveyraud L, Huc E, Im JS, Sansano S, Brando T, Julien S, Prandi J, Gilleron M, Porcelli SA, de la Salle H, Heck AJ, Mori L, Puzo G, Mourey L, De Libero G (2011) Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids. Proc Natl Acad Sci USA 108(43):17755–17760. https://doi.org/10.1073/pnas.1110118108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Bohmer G, Prandi J, Mori L, Puzo G, De Libero G (2004) Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199(5):649–659. https://doi.org/10.1084/jem.20031097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB, Wilson IA, Costello CE, Brenner MB (2004) T cell activation by lipopeptide antigens. Science 303(5657):527–531. https://doi.org/10.1126/science.1089353

    Article  CAS  PubMed  Google Scholar 

  117. Zajonc DM, Crispin MD, Bowden TA, Young DC, Cheng TY, Hu J, Costello CE, Rudd PM, Dwek RA, Miller MJ, Brenner MB, Moody DB, Wilson IA (2005) Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22(2):209–219. https://doi.org/10.1016/j.immuni.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  118. Snow GA, White AJ (1969) Chemical and biological properties of mycobactins isolated from various mycobacteria. Biochem J 115(5):1031–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Layre E, Paepe DC, Larrouy-Maumus G, Vaubourgeix J, Mundayoor S, Lindner B, Puzo G, Gilleron M (2011) Deciphering sulfoglycolipids of Mycobacterium tuberculosis. J Lipid Res 52(6):1098–1110. https://doi.org/10.1194/jlr.M013482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scharf L, Li NS, Hawk AJ, Garzon D, Zhang T, Fox LM, Kazen AR, Shah S, Haddadian EJ, Gumperz JE, Saghatelian A, Faraldo-Gomez JD, Meredith SC, Piccirilli JA, Adams EJ (2010) The 2.5 A structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33(6):853–862. https://doi.org/10.1016/j.immuni.2010.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roy S, Ly D, Li NS, Altman JD, Piccirilli JA, Moody DB, Adams EJ (2014) Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by alphabeta T cells. Proc Natl Acad Sci USA 111(43):E4648–E4657. https://doi.org/10.1073/pnas.1408549111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Van Rhijn I, van Berlo T, Hilmenyuk T, Cheng TY, Wolf BJ, Tatituri RV, Uldrich AP, Napolitani G, Cerundolo V, Altman JD, Willemsen P, Huang S, Rossjohn J, Besra GS, Brenner MB, Godfrey DI, Moody DB (2016) Human autoreactive T cells recognize CD1b and phospholipids. Proc Natl Acad Sci USA 113(2):380–385. https://doi.org/10.1073/pnas.1520947112

    Article  PubMed  CAS  Google Scholar 

  123. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC, Ritter G, Schmidt RR, Jones EY, Cerundolo V (2002) Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat Immunol 3(8):721–726. https://doi.org/10.1038/ni821

    Article  CAS  PubMed  Google Scholar 

  124. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic acids research 34(Web Server issue):W116–W118. https://doi.org/10.1093/nar/gkl282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schrodinger, LLC (2015) The PyMOL Molecular Graphics System, Version 1.7.6.4

Download references

Acknowledgements

Our research is supported by the US National Institutes of Health (NIH) (AI 111224), Monash University (Australia), the Australian National Health and Medical Research (NHMRC), and the Australian Research Council (ARC). SG is a Monash Senior Research Fellow and J. L. N. is an ARC Future Fellow (FT160100074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Le Nours.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gras, S., Van Rhijn, I., Shahine, A. et al. Molecular recognition of microbial lipid-based antigens by T cells. Cell. Mol. Life Sci. 75, 1623–1639 (2018). https://doi.org/10.1007/s00018-018-2749-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2749-4

Keywords

Navigation