Skip to main content
Log in

Microbiome–health interactions in older people

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alterations in the composition and function of the gut microbiome have been implicated in a range of conditions and diseases. Culture-dependent and culture-independent studies both showed that older people harbour a gut microbiome that differs in composition from that of younger adults. Detailed analyses have identified discrete microbiota subtypes that characterize intermediates between a high diversity microbiota found in healthy community-dwelling subjects and a low diversity microbiota typical for elderly living in long-term residential care. There are also alterations in the microbiome composition associated with biological age, independent of health status. Even after adjusting for confounding factors such as age and medication, trends in microbiota composition correlate with gradients in clinical metadata particularly frailty and inflammatory status. There are few known mechanisms by which these associations might be causative rather than consequential, and this is a subject of intensive research. The strongest candidate effectors are microbial metabolites that could impact host energy balance, act as signalling molecules to modulate host metabolism or inflammation, and potentially also impact on the gut–brain axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonsall MB (2006) Longevity and ageing: appraising the evolutionary consequences of growing old. Philos Trans R Soc Lond B Biol Sci 361(1465):119–135

    Article  PubMed  Google Scholar 

  2. Browne HP et al (2016) Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533(7604):543–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Consortium, H.M.P. (2012) A framework for human microbiome research. Nature 486(7402):215–221

    Article  Google Scholar 

  5. Falony G et al (2016) Population-level analysis of gut microbiome variation. Science 352(6285):560–564

    Article  CAS  PubMed  Google Scholar 

  6. Zhernakova A et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie H et al (2016) Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst 3(6):572 e3–584 e3

    Google Scholar 

  8. Faith JJ et al (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439

    Article  PubMed  PubMed Central  Google Scholar 

  9. Human Microbiome Jumpstart Reference Strains C et al (2010) A catalog of reference genomes from the human microbiome. Science 328(5981):994–999

    Article  Google Scholar 

  10. Franceschi C et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 908:244–254

    Article  CAS  PubMed  Google Scholar 

  11. O’Toole PW, Claesson MJ (2010) Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J 20:281–291

    Article  Google Scholar 

  12. Mitsuoka T (1978) Intestinal bacteria and health. Harcourt Brace Jovanovich, Tokyo

    Google Scholar 

  13. Woodmansey EJ et al (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70(10):6113–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fraher MH, O’Toole PW, Quigley EM (2012) Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 9(6):312–322

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi H et al (2003) Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol 47(8):557–570

    Article  CAS  PubMed  Google Scholar 

  16. Mueller S et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mariat D et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zwielehner J et al (2009) Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol 44(6–7):440–446

    Article  CAS  PubMed  Google Scholar 

  19. Bartosch S et al (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70(6):3575–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1(2):101–114

    Article  CAS  PubMed  Google Scholar 

  21. Blaser MJ, Falkow S (2009) What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 7(12):887–894

    Article  CAS  PubMed  Google Scholar 

  22. Dethlefsen L et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Tongeren SP et al (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71(10):6438–6442

    Article  PubMed  PubMed Central  Google Scholar 

  24. Claesson MJ et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(Suppl 1):4586–4591

    Article  CAS  PubMed  Google Scholar 

  25. Consortium, H.M.P., The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  Google Scholar 

  26. Cusack S, O’Toole PW, Consortium E (2013) Challenges and implications for biomedical research and intervention studies in older populations: insights from the ELDERMET study. Gerontology 59(2):114–121

    Article  CAS  PubMed  Google Scholar 

  27. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flint HJ et al (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589

    Article  CAS  PubMed  Google Scholar 

  30. Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Claesson MJ et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–185

    Article  CAS  PubMed  Google Scholar 

  32. Drescher LS, Thiele S, Mensink GB (2007) A new index to measure healthy food diversity better reflects a healthy diet than traditional measures. J Nutr 137(3):647–651

    CAS  PubMed  Google Scholar 

  33. Pryde SE et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139

    Article  CAS  PubMed  Google Scholar 

  34. Jeffery IB et al (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol 10:591–592

    Article  CAS  PubMed  Google Scholar 

  35. Biagi E et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5(5):e10667

    Article  PubMed  PubMed Central  Google Scholar 

  36. Odamaki T et al (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16:90

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kong F et al (2016) Gut microbiota signatures of longevity. Curr Biol 26(18):R832–R833

    Article  CAS  PubMed  Google Scholar 

  38. LeBlanc JG et al (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168

    Article  CAS  PubMed  Google Scholar 

  39. Bashan A et al (2016) Universality of human microbial dynamics. Nature 534(7606):259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE 7(2):e30126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeffery IB, Lynch DB, O’Toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10(1):170–182

    Article  CAS  PubMed  Google Scholar 

  42. O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215

    Article  PubMed  Google Scholar 

  43. Rampelli S et al (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 5(12):902–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. da Costa Maranduba CM et al (2015) Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res. doi:10.1155/2015/931574

    Google Scholar 

  45. Kim KA et al (2016) Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol 16:9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jackson MA et al (2016) Signatures of early frailty in the gut microbiota. Genome Med 8(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miquel S et al (2015) Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio 6:1–10

    Article  CAS  Google Scholar 

  48. Manzanares W et al (2016) Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care 19:262

    Article  PubMed  Google Scholar 

  49. Whorwell PJ et al (2006) Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 101(7):1581–1590

    Article  PubMed  Google Scholar 

  50. Luyer MD et al (2005) Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infect Immun 73(6):3686–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Riggs JE, Schochet SS Jr (1989) Osmotic stress, osmotic myelinolysis, and oligodendrocyte topography. Arch Pathol Lab Med 113(12):1386–1388

    CAS  PubMed  Google Scholar 

  52. Pigneur B, Sokol H (2016) Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal Immunol 9(6):1360–1365

    Article  CAS  PubMed  Google Scholar 

  53. Hughes V (2012) Microbiome: cultural differences. Nature 492(7427):S14–S15

    Article  CAS  PubMed  Google Scholar 

  54. de la Cuesta-Zuluaga J et al (2017) Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40(1):54–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. O’Toole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Toole, P.W., Jeffery, I.B. Microbiome–health interactions in older people. Cell. Mol. Life Sci. 75, 119–128 (2018). https://doi.org/10.1007/s00018-017-2673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2673-z

Keywords

Navigation