Skip to main content
Log in

Regulation of long-distance transport of mitochondria along microtubules

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor–mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Miro:

Mitochondrial Rho-GTPase

MT:

Microtubules

MTOC:

Microtubule-organizing center

TRAK:

Trafficking kinesin protein

γTuRC:

γ-Tubulin ring complex

References

  1. Allan VJ (2011) Cytoplasmic dynein. Biochem Soc Trans 39:1169–1178

    Article  CAS  PubMed  Google Scholar 

  2. Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 16:1150–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Auer TO, Xiao T, Bercier V, Gebhardt C, Duroure K, Concordet JP, Wyart C, Suster M, Kawakami K, Wittbrodt J, Baier H, Del Bene F (2015) Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. eLife 4:e05061. doi:10.7554/eLife.05061

  5. Baas PW, Ahmad FJ (2013) Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain 136:2937–2951

    Article  PubMed  PubMed Central  Google Scholar 

  6. Babic M, Russo GJ, Wellington AJ, Sangston RM, Gonzalez M, Zinsmaier KE (2015) Miro’s N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites. J Neurosci 35:5754–5771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barker AR, McIntosh KV, Dawe HR (2016) Centrosome positioning in non-dividing cells. Protoplasma 253:1007–1021

    Article  PubMed  Google Scholar 

  8. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8:451–463

    Article  CAS  PubMed  Google Scholar 

  9. Bitan A, Rosenbaum I, Abdu U (2012) Stable and dynamic microtubules coordinately determine and maintain Drosophila bristle shape. Development. 139:1987–1996

    Article  CAS  PubMed  Google Scholar 

  10. Brickley K, Stephenson FA (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286:18079–18092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai Q, Gerwin C, Sheng ZH (2005) Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 170:959–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai Q, Zakaria HM, Simone A, Sheng ZH (2012) Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol 22:545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caino MC, Seo JH, Aguinaldo A, Wait E, Bryant KG, Kossenkov AV, Hayden JE, Vaira V, Morotti A, Ferrero S, Bosari S, Gabrilovich DI, Languino LR, Cohen AR, Altieri DC (2016) A neuronal network of mitochondrial dynamics regulates metastasis. Nat Commun 7:13730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Callan-Jones AC, Voituriez R (2016) Actin flows in cell migration: from locomotion and polarity to trajectories. Curr Opin Cell Biol 38:12–17

    Article  CAS  PubMed  Google Scholar 

  16. Campbell PD, Shen K, Sapio MR, Glenn TD, Talbot WS, Marlow FL (2014) Unique function of Kinesin Kif5A in localization of mitochondria in axons. J Neurosci 34:14717–14732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A (2006) Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 203:2879–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho C, Vale RD (2012) The mechanism of dynein motility: insight from crystal structures of the motor domain. Biochem Biophys Acta 1823:182–191

    Article  CAS  PubMed  Google Scholar 

  19. Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

    Article  CAS  PubMed  Google Scholar 

  20. Conduit PT, Wainman A, Raff JW (2015) Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16:611–624

    Article  CAS  PubMed  Google Scholar 

  21. Cox RT, Spradling AC (2006) Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development 133:3371–3377

    Article  CAS  PubMed  Google Scholar 

  22. Cunniff B, McKenzie AJ, Heintz NH, Howe AK (2016) AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 27:2662–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. da Silva AF, Mariotti FR, Maximo V, Campello S (2014) Mitochondria dynamism: of shape, transport and cell migration. Cell Mol Life Sci 71:2313–2324

    PubMed  Google Scholar 

  24. Desai SP, Bhatia SN, Toner M, Irimia D (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Drerup CM, Herbert AL, Monk KR, Nechiporuk AV (2017) Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons. eLife 6:e22234. doi:10.7554/eLife.22234

  26. Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183

    Article  CAS  PubMed  Google Scholar 

  27. Etienne-Manneville S (2013) Microtubules in cell migration. Annu Rev Cell Dev Biol 29:471–499

    Article  CAS  PubMed  Google Scholar 

  28. Fang Y, Soares L, Teng X, Geary M, Bonini NM (2012) A novel Drosophila model of nerve injury reveals an essential role of Nmnat in maintaining axonal integrity. Curr Biol 22:590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferree AW, Trudeau K, Zik E, Benador IY, Twig G, Gottlieb RA, Shirihai OS (2013) MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 9:1887–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fransson A, Ruusala A, Aspenstrom P (2003) Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278:6495–6502

    Article  CAS  PubMed  Google Scholar 

  31. Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential organelle. Traffic 8:1668–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geraldo S, Gordon-Weeks PR (2009) Cytoskeletal dynamics in growth-cone steering. J Cell Sci 122:3595–3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gong TW, Winnicki RS, Kohrman DC, Lomax MI (1999) A novel mouse kinesin of the UNC-104/KIF1 subfamily encoded by the Kif1b gene. Gene 239:117–127

    Article  CAS  PubMed  Google Scholar 

  35. Gorska-Andrzejak J, Stowers RS, Borycz J, Kostyleva R, Schwarz TL, Meinertzhagen IA (2003) Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J Comp Neurol 463:372–388

    Article  CAS  PubMed  Google Scholar 

  36. Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP, Atwood HL, Zinsmaier KE (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47:379–393

    Article  CAS  PubMed  Google Scholar 

  37. Haghnia M, Cavalli V, Shah SB, Schimmelpfeng K, Brusch R, Yang G, Herrera C, Pilling A, Goldstein LS (2007) Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell 18:2081–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han SM, Baig HS, Hammarlund M (2016) Mitochondria localize to injured axons to support regeneration. Neuron 92:1308–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hatch AL, Gurel PS, Higgs HN (2014) Novel roles for actin in mitochondrial fission. J Cell Sci 127:4549–4560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hill SE, Parmar M, Gheres KW, Guignet MA, Huang Y, Jackson FR, Rolls MM (2012) Development of dendrite polarity in Drosophila neurons. Neural Dev 7:34

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  CAS  PubMed  Google Scholar 

  42. Hirokawa N, Tanaka Y (2015) Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. Exp Cell Res 334:16–25

    Article  CAS  PubMed  Google Scholar 

  43. Hollenbeck PJ (1996) The pattern and mechanism of mitochondrial transport in axons. Front Biosci 1:d91–d102

    Article  CAS  PubMed  Google Scholar 

  44. Howard J, Hyman AA (2009) Growth, fluctuation and switching at microtubule plus ends. Nat Rev Mol Cell Biol 10:569–574

    Article  CAS  PubMed  Google Scholar 

  45. Hsieh CH, Shaltouki A, Gonzalez AE, Bettencourt da Cruz A, Burbulla LF, St Lawrence E, Schule B, Krainc D, Palmer TD, Wang X (2016) Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hurd DD, Saxton WM (1996) Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144:1075–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N (2000) KIF5C, a novel neuronal kinesin enriched in motor neurons. J Neurosci 20:6374–6384

    CAS  PubMed  Google Scholar 

  48. Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87:492–506

    Article  CAS  PubMed  Google Scholar 

  50. Karle KN, Mockel D, Reid E, Schols L (2012) Axonal transport deficit in a KIF5A(-/-) mouse model. Neurogenetics 13:169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kimura T, Murakami F (2014) Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex. J Neurosci 34:6938–6951

    Article  CAS  PubMed  Google Scholar 

  52. Lee H, Yoon Y (2014) Mitochondrial fission: regulation and ER connection. Mol Cells 37:89–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ligon LA, Steward O (2000) Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:340–350

    Article  CAS  PubMed  Google Scholar 

  54. Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8:e1002537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopez-Domenech G, Higgs NF, Vaccaro V, Ros H, Arancibia-Carcamo IL, MacAskill AF, Kittler JT (2016) Loss of dendritic complexity precedes neurodegeneration in a mouse model with disrupted mitochondrial distribution in mature dendrites. Cell Rep 17:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Loss O, Stephenson FA (2015) Localization of the kinesin adaptor proteins trafficking kinesin proteins 1 and 2 in primary cultures of hippocampal pyramidal and cortical neurons. J Neurosci Res 93:1056–1066

    Article  CAS  PubMed  Google Scholar 

  57. Loss O, Stephenson FA (2017) Developmental changes in TRAK-mediated mitochondrial transport in neurons. Mol Cell Neurosci 80:134–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luders J, Stearns T (2007) Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 8:161–167

    Article  PubMed  CAS  Google Scholar 

  59. Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Magrane J, Cortez C, Gan WB, Manfredi G (2014) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23:1413–1424

    Article  CAS  PubMed  Google Scholar 

  61. Mannella CA (2008) Structural diversity of mitochondria: functional implications. Ann N Y Acad Sci 1147:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P (2017) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. doi:10.1016/j.ceca.2017.05.003

    PubMed  Google Scholar 

  63. Margolin G, Gregoretti IV, Cickovski TM, Li C, Shi W, Alber MS, Goodson HV (2012) The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model. Mol Biol Cell 23:642–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin-Cofreces NB, Robles-Valero J, Cabrero JR, Mittelbrunn M, Gordon-Alonso M, Sung CH, Alarcon B, Vazquez J, Sanchez-Madrid F (2008) MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol 182:951–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  PubMed  Google Scholar 

  66. Melkov A, Baskar R, Alcalay Y, Abdu U (2016) A new mode of mitochondrial transport and polarized sorting regulated by Dynein, Milton and Miro. Development 143:4203–4213

    Article  CAS  PubMed  Google Scholar 

  67. Melkov A, Simchoni Y, Alcalay Y, Abdu U (2015) Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways. Biol Open 4:1696–1706

    Article  PubMed  PubMed Central  Google Scholar 

  68. Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117:2791–2804

    Article  CAS  PubMed  Google Scholar 

  69. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  70. Morfini G, Schmidt N, Weissmann C, Pigino G, Kins S (2016) Conventional kinesin: biochemical heterogeneity and functional implications in health and disease. Brain Res Bull 126:347–353

    Article  CAS  PubMed  Google Scholar 

  71. Morlino G, Barreiro O, Baixauli F, Robles-Valero J, Gonzalez-Granado JM, Villa-Bellosta R, Cuenca J, Sanchez-Sorzano CO, Veiga E, Martin-Cofreces NB, Sanchez-Madrid F (2014) Miro-1 links mitochondria and microtubule Dynein motors to control lymphocyte migration and polarity. Mol Cell Biol 34:1412–1426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Morotz GM, De Vos KJ, Vagnoni A, Ackerley S, Shaw CE, Miller CC (2012) Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum Mol Genet 21:1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:1209–1220

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen MM, Stone MC, Rolls MM (2011) Microtubules are organized independently of the centrosome in Drosophila neurons. Neural Dev 6:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nguyen TT, Oh SS, Weaver D, Lewandowska A, Maxfield D, Schuler MH, Smith NK, Macfarlane J, Saunders G, Palmer CA, Debattisti V, Koshiba T, Pulst S, Feldman EL, Hajnoczky G, Shaw JM (2014) Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc Natl Acad Sci USA 111:E3631–E3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Otera H, Ishihara N, Mihara K (2013) New insights into the function and regulation of mitochondrial fission. Biochem Biophys Acta 1833:1256–1268

    Article  CAS  PubMed  Google Scholar 

  77. Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109(Pt 5):971–980

    CAS  PubMed  Google Scholar 

  78. Pathak D, Sepp KJ, Hollenbeck PJ (2010) Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J Neurosci 30:8984–8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492:50–65

    Article  PubMed  Google Scholar 

  81. Quintana A, Schwarz EC, Schwindling C, Lipp P, Kaestner L, Hoth M (2006) Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. J Biol Chem 281:40302–40309

    Article  CAS  PubMed  Google Scholar 

  82. Rawson RL, Yam L, Weimer RM, Bend EG, Hartwieg E, Horvitz HR, Clark SG, Jorgensen EM (2014) Axons degenerate in the absence of mitochondria in C. elegans. Curr Biol: CB 24:760–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reilein A, Yamada S, Nelson WJ (2005) Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J Cell Biol 171:845–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rice SE, Gelfand VI (2006) Paradigm lost: milton connects kinesin heavy chain to miro on mitochondria. J Cell Biol 173:459–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Russo GJ, Louie K, Wellington A, Macleod GT, Hu F, Panchumarthi S, Zinsmaier KE (2009) Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J Neurosci 29:5443–5455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. EMBO J 18:501–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanchez-Madrid F, Serrador JM (2007) Mitochondrial redistribution: adding new players to the chemotaxis game. Trends Immunol 28:193–196

    Article  CAS  PubMed  Google Scholar 

  89. Satoh AK, Li BX, Xia H, Ready DF (2008) Calcium-activated Myosin V closes the Drosophila pupil. Curr Biol 18:951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Satoh D, Sato D, Tsuyama T, Saito M, Ohkura H, Rolls MM, Ishikawa F, Uemura T (2008) Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nat Cell Biol 10:1164–1171

    Article  CAS  PubMed  Google Scholar 

  91. Scarpa E, Mayor R (2016) Collective cell migration in development. J Cell Biol 212:143–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779

    Article  CAS  PubMed  Google Scholar 

  93. Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Siddiqui SS (2002) Metazoan motor models: kinesin superfamily in C. elegans. Traffic 3:20–28

    Article  PubMed  Google Scholar 

  95. Stiess M, Maghelli N, Kapitein LC, Gomis-Ruth S, Wilsch-Brauninger M, Hoogenraad CC, Tolic-Norrelykke IM, Bradke F (2010) Axon extension occurs independently of centrosomal microtubule nucleation. Science 327:704–707

    Article  CAS  PubMed  Google Scholar 

  96. Stone MC, Roegiers F, Rolls MM (2008) Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol Biol Cell 19:4122–4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stowers RS, Megeath LJ, Gorska-Andrzejak J, Meinertzhagen IA, Schwarz TL (2002) Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron 36:1063–1077

    Article  CAS  PubMed  Google Scholar 

  98. Suhm T, Ott M (2017) Mitochondrial translation and cellular stress response. Cell Tissue Res 367:21–31

    Article  CAS  PubMed  Google Scholar 

  99. Sulimenko V, Hajkova Z, Klebanovych A, Draber P (2017) Regulation of microtubule nucleation mediated by gamma-tubulin complexes. Protoplasma 254:1187–1199

    Article  CAS  PubMed  Google Scholar 

  100. Tanaka K, Sugiura Y, Ichishita R, Mihara K, Oka T (2011) KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J Cell Sci 124:2457–2465

    Article  CAS  PubMed  Google Scholar 

  101. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158

    Article  CAS  PubMed  Google Scholar 

  102. Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491

    Article  CAS  PubMed  Google Scholar 

  103. Toya M, Takeichi M (2016) Organization of non-centrosomal microtubules in epithelial cells. Cell Struct Funct 41:127–135

    Article  PubMed  Google Scholar 

  104. Vagnoni A, Hoffmann PC, Bullock SL (2016) Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons. J Cell Sci 129:178–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vallee RB, Williams JC, Varma D, Barnhart LE (2004) Dynein: an ancient motor protein involved in multiple modes of transport. J Neurobiol 58:189–200

    Article  CAS  PubMed  Google Scholar 

  106. van Beuningen SF, Hoogenraad CC (2016) Neuronal polarity: remodeling microtubule organization. Curr Opin Neurobiol 39:1–7

    Article  PubMed  CAS  Google Scholar 

  107. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, Wulf PS, Keijzer N, Demmers J, Kapitein LC, Jaarsma D, Gerritsen HC, Akhmanova A, Hoogenraad CC (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502

    Article  PubMed  CAS  Google Scholar 

  108. Varadi A, Johnson-Cadwell LI, Cirulli V, Yoon Y, Allan VJ, Rutter GA (2004) Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J Cell Sci 117:4389–4400

    Article  CAS  PubMed  Google Scholar 

  109. Verhey KJ, Kaul N, Soppina V (2011) Kinesin assembly and movement in cells. Ann Rev Biophys 40:267–288

    Article  CAS  Google Scholar 

  110. Vinogradova T, Miller PM, Kaverina I (2009) Microtubule network asymmetry in motile cells: role of Golgi-derived array. Cell Cycle 8:2168–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wozniak MJ, Melzer M, Dorner C, Haring HU, Lammers R (2005) The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC cell Biol 6:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Yagi T (2009) Bioinformatic approaches to dynein heavy chain classification. Methods Cell Biol 92:1–9

    Article  CAS  PubMed  Google Scholar 

  114. Yan J, Chao DL, Toba S, Koyasako K, Yasunaga T, Hirotsune S, Shen K (2013) Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife 2:e00133

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yau KW, Schatzle P, Tortosa E, Pages S, Holtmaat A, Kapitein LC, Hoogenraad CC (2016) Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J Neurosci 36:1071–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yau KW, van Beuningen SF, Cunha-Ferreira I, Cloin BM, van Battum EY, Will L, Schatzle P, Tas RP, van Krugten J, Katrukha EA, Jiang K, Wulf PS, Mikhaylova M, Harterink M, Pasterkamp RJ, Akhmanova A, Kapitein LC, Hoogenraad CC (2014) Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82:1058–1073

    Article  CAS  PubMed  Google Scholar 

  117. Ye X, Sun X, Starovoytov V, Cai Q (2015) Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet 24:2938–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu Y, Lee HC, Chen KC, Suhan J, Qiu M, Ba Q, Yang G (2016) Inner membrane fusion mediates spatial distribution of axonal mitochondria. Sci Rep 6:18981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang F, Wang W, Siedlak SL, Liu Y, Liu J, Jiang K, Perry G, Zhu X, Wang X (2015) Miro1 deficiency in amyotrophic lateral sclerosis. Front Aging Neurosci 7:100

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Abdu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkov, A., Abdu, U. Regulation of long-distance transport of mitochondria along microtubules. Cell. Mol. Life Sci. 75, 163–176 (2018). https://doi.org/10.1007/s00018-017-2590-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2590-1

Keywords

Navigation