Skip to main content
Log in

Prions are affected by evolution at two levels

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TSE:

Transmissible spongiform encephalopathy

BSE:

Bovine spongiform encephalopathy

References

  1. Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214:764–766

    Article  CAS  PubMed  Google Scholar 

  2. Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044

    Article  CAS  PubMed  Google Scholar 

  3. Dickinson AG, Meikle VMH, Fraser H (1968) Identification of a gene which controls the incubation period of some strains of scrapie in mice. J Comp Path 78:293–299

    Article  CAS  PubMed  Google Scholar 

  4. Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311

    Article  CAS  PubMed  Google Scholar 

  5. Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Templow DB, Hood LE, Prusiner SB, Weissmann C (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40:735–746

    Article  CAS  PubMed  Google Scholar 

  6. Carlson GA, Goodman PA, Lovett M, Taylor BA, Marshall ST, Peterson-Torchia M, Westaway D, Prusiner SB (1988) Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol Cell Biol 8:5528–5540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bueler H, Aguzzi A, Sailer A, Greiner R-A, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to Scrapie. Cell 73:1339–1347

    Article  CAS  PubMed  Google Scholar 

  8. Prusiner SB, Scott M, Foster D, Pan K-M, Groth D, Mirenda C, Torchia M, Yang S-L, Serban D, Carlson GA, Hoppe PC, Westaway D, DeArmond SJ (1990) Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63:673–686

    Article  CAS  PubMed  Google Scholar 

  9. Delault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone S (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci USA 109:8546–8551

    Article  Google Scholar 

  10. Cox BS (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505–521

    Article  Google Scholar 

  11. Lacroute F (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 106:519–522

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in S. cerevisiae. Science 264:566–569

    Article  CAS  PubMed  Google Scholar 

  13. Lund PM, Cox BS (1981) Reversion analysis of [psi−] mutations in Saccharomyces cerevisiae. Genet Res 37:173–182

    Article  CAS  PubMed  Google Scholar 

  14. Chernoff YO, Derkach IL, Inge-Vechtomov SG (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268–270

    Article  CAS  PubMed  Google Scholar 

  15. Aigle M, Lacroute F (1975) Genetical aspects of [URE3], a non-Mendelian, cytoplasmically inherited mutation in yeast. Mol Gen Genet 136:327–335

    Article  CAS  PubMed  Google Scholar 

  16. Doel SM, McCready SJ, Nierras CR, Cox BS (1994) The dominant PNM2 mutation which eliminates the [PSI] factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95

    Article  CAS  PubMed  Google Scholar 

  18. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1996) Propagation of the yeast prion-like [psi +] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15:3127–3134

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Patino MM, Liu J-J, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626

    Article  CAS  PubMed  Google Scholar 

  20. Masison DC, Maddelein M-L, Wickner RB (1997) The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Natl Acad Sci USA 94:12503–12508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. TerAvanesyan A, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676

    CAS  Google Scholar 

  22. King CY, Diaz-Avalos R (2004) Protein-only transmission of three yeast prion strains. Nature 428:319–323

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428:323–328

    Article  CAS  PubMed  Google Scholar 

  24. Brachmann A, Baxa U, Wickner RB (2005) Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 24:3082–3092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to th GATA factors: connecting the dots. FEMS Microbiol Revs 26:223–238

    Article  CAS  Google Scholar 

  26. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  CAS  PubMed  Google Scholar 

  27. Stansfield I, Tuite MF (1994) Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet 25:385–395

    Article  CAS  PubMed  Google Scholar 

  28. Frolova L, LeGoff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni A-L, Celis JE, Philippe M, Justesen J, Kisselev L (1994) A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701–703

    Article  CAS  PubMed  Google Scholar 

  29. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172

    Article  CAS  PubMed  Google Scholar 

  31. Derkatch IL, Bradley ME, Hong JY, Liebman SW (2001) Prions affect the appearance of other prions: the story of [PIN]. Cell 106:171–182

    Article  CAS  PubMed  Google Scholar 

  32. Rizet G (1952) Les phenomenes de barrage chez Podospora anserina: analyse genetique des barrages entre les souches s et S. Rev Cytol Biol Veg 13:51–92

    Google Scholar 

  33. Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Saupe SJ (2011) The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Sem Cell Dev Biol 22:460–468

    Article  CAS  Google Scholar 

  35. van Rheede T, Smolenaars MM, Madsen O, de Jong WW (2003) Molecular evolution of the mammalian prion protein. Mol Biol and Evol 20:111–121

    Article  CAS  Google Scholar 

  36. Prusiner SB (ed) (2004) Prion biology and diseases, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  37. Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327

    Article  CAS  PubMed  Google Scholar 

  38. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Kushnirov VV, Kryndushkin D, Boguta M, Smirnov VN, Ter-Avanesyan MD (2000) Chaperones that cure yeast artificial [PSI +] and their prion-specific effects. Curr Biol 10:1443–1446

    Article  CAS  PubMed  Google Scholar 

  40. King CY (2001) Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J Mol Biol 307:1247–1260

    Article  CAS  PubMed  Google Scholar 

  41. Bradley ME, Liebman SW (2003) Destabilizing interactions among [PSI+] and [PIN+] yeast prion variants. Genetics 165:1675–1685

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Borchsenius AS, Muller S, Newnam GP, Inge-Vechtomov SG, Chernoff YO (2006) Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr Genet 49:21–29

    Article  CAS  PubMed  Google Scholar 

  43. Edskes HK, McCann LM, Hebert AM, Wickner RB (2009) Prion variants and species barriers among Saccharomyces Ure2 proteins. Genetics 181:1159–1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. McGlinchey R, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci USA 108:5337–5341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bateman D, Wickner RB (2013) The [PSI+] prion exists as a dynamic cloud of variants. PLoS Genet 9:e1003257. doi:10.1371/journal.pgen.1003257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wickner RB, Beszonov E, Bateman DA (2014) Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proc Natl Acad Sci USA 111:E2711–E2720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hosoda N, Kobayashii T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T (2003) Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 278:38287–38291

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi T, Funakoshi Y, Hoshino S, Katada T (2004) The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem 279:45693–45700

    Article  CAS  PubMed  Google Scholar 

  49. Shewmaker F, Mull L, Nakayashiki T, Masison DC, Wickner RB (2007) Ure2p function is enhanced by its prion domain in Saccharomyces cerevisiae. Genetics 176:1557–1565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Li X, Rayman JB, Kandel ER, Derkatch IL (2014) Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton. Mol Cell 55:1–14

    Article  CAS  Google Scholar 

  51. Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-279) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  PubMed  Google Scholar 

  53. Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Baxa U, Wickner RB, Steven AC, Anderson D, Marekov L, Yau W-M, Tycko R (2007) Characterization of β-sheet structure in Ure2p1-89 yeast prion fibrils by solid state nuclear magnetic resonance. Biochemistry 46:13149–13162

    Article  CAS  PubMed  Google Scholar 

  55. Wickner RB, Dyda F, Tycko R (2008) Amyloid of Rnq1p, the basis of the [PIN +] prion, has a parallel in-register β-sheet structure. Proc Natl Acad Sci USA 105:2403–2408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Gorkovskiy A, Thurber KR, Tycko R, Wickner RB (2014) Locating the folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proc Natl Acad Sci USA 111:E4615–E4622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Shewmaker F, Kryndushkin D, Chen B, Tycko R, Wickner RB (2009) Two prion variants of Sup35p have in-register β-sheet structures, independent of hydration. Biochemistry 48:5074–5082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Pierce MM, Baxa U, Steven AC, Bax A, Wickner RB (2005) Is the prion domain of soluble Ure2p unstructured? Biochemistry 44:321–328

    Article  CAS  PubMed  Google Scholar 

  59. Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T (2007) Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol 5:611–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, Zhou A (2013) Amyloids and yeast prion biology. Biochemistry 52:1514–1527

    Article  CAS  PubMed  Google Scholar 

  61. Wickner RB, Shewmaker FP, Bateman DA, Edskes HE, Gorkovskiy A, Dayani Y, Beszonov EE (2015) Yeast prions: structure, biology and prion-handling systems. Microbiol Mol Biol Rev 79:1–17

    Article  PubMed  Google Scholar 

  62. Belay ED (1999) Transmissible spongiform encephalopathies in humans. Ann Rev Microbiol 53:283–314

    Article  CAS  Google Scholar 

  63. Novakofski J, Brewer MS, Mateus-Pinilla NE, Killefer J, McCusker RH (2005) Prion biology relevant to bovine spongiform encephalopathy. J Animal Sci 83:1455–1476

    CAS  Google Scholar 

  64. Sigurdson CJ (2008) A prion disease of cervids: chronic wasting disease. Vet Res 39:41

    Article  PubMed  CAS  Google Scholar 

  65. Grufiydd-Jones T, Galloway P, Pearson G (1992) Feline spongiform encephalopathy. J Small Animal Pract 33:471–476

    Article  Google Scholar 

  66. Miller MW, Williams ES (2003) Prion disease: horizontal prion transmission in mule deer. Nature 425:35–36

    Article  CAS  PubMed  Google Scholar 

  67. McIntyre KM, Gubbins S, Sivam SK, Baylis M (2006) Flock-level risk factors for scrapie in Great Britain: analysis of a 2002 anonymous postal survey. BMC Vet Res 2:25

    Article  PubMed Central  PubMed  Google Scholar 

  68. Ryder S, Dexter G, Bellworthy S, Tongue S (2004) Demonstration of lateral transmission of scrapie between sheep kept under natural conditions using lymphoid tissue biopsy. Res Vet Sci 76:211–217

    Article  CAS  PubMed  Google Scholar 

  69. Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mason GL, Hays SA, Hayes-Klug J, Seelig DM (2006) Infectious prions in the saliva and blood of deer with chronic wasting disease. Science 314:133–136

    Article  CAS  PubMed  Google Scholar 

  70. Murayama Y, Yoshioka M, Okada H, Takata M, Yokoyama T, Mohri S (2007) Urinary excretion and blood level of prions in scrapie-infected hamsters. J Gen Virol 88:2890–2898

    Article  CAS  PubMed  Google Scholar 

  71. Gregori L, Kovacs GG, Alexeeva I, Budka H, Rohwer RG (2008) Excretion of transmissible spongiform encephalopathy infectivity in urine. Emerg Inf Dis 14:1406

    Article  Google Scholar 

  72. Gonzalez-Romero D, Barria MA, Leon P, Morales R, Soto C (2008) Detection of infectious prions in urine. FEBS Lett 582:3161–3166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Safar JG, Lessard P, Tamguney G, Freyman Y, Deering C, Letessier F, DeArmond SJ, Prusiner SB (2008) Transmission and detection of prions in feces. J Infect Dis 198:81–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Maddison BC, Baker C, Rees H, Terry L, Thorne L, Bellworthy S, Whitelam G, Gough K (2009) Prions are secreted in milk from clinically normal scrapie-exposed sheep. J Virol 83:8293–8296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Maddison BC, Rees H, Baker CA, Taema M, Bellworthy SJ, Thorne L, Terry L, Gough K (2010) Prions are secreted into the oral cavity in sheep with preclinical scrapie. J Infect Dis 201:1672–1676

    Article  PubMed  Google Scholar 

  76. Johnson CJ, Pederson JA, Chappell RJ, McKenzie D, Aiken JM (2007) Oral transmission of prion diseae is enhanced by binding to soil particles. PLoS Pathog 3:e93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pederson JA (2006) Prions adhere to soil minerals and remain infectious. PLoS Pathog 2:e32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Seidel B, Thomzig A, Buschmann A, Groschup MH, Peters R, Beekes M, Terytze K (2007) Scrapie agent (strain 263K) can transmit disease via the oral route after persistence in soil over years. PLoS ONE 2:1–8

    Article  CAS  Google Scholar 

  79. Miller MW, Williams ES (2004) Chronic wasting disease of cervids. Curr Top Microbiol Immunol 284:193–214

    CAS  PubMed  Google Scholar 

  80. Angers RC, Browning SR, Seward TS, Sigurdson C, Miller MW, Hoover EA, Telling GC (2006) Prions in skeletal muscles of deer with chronic wasting disease. Science 311:1117

    Article  CAS  PubMed  Google Scholar 

  81. Bosque PJ, Ryou C, Telling GC, Peretz D, Legname G, DeArmond SJ, Prusiner SB (2002) Prions in skeletal muscle. Proc Natl Acad Sci USA 99:3812–3817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Denkers ND, Hayes-Klug J, Anderson KR, Seelig DM, Haley NJ, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mathiason CK (2013) Aerosol transmission of chronic wasting disease in white-tailed deer. J Virol 87:1890–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Heppner FL, Christ AD, Klein MA, Prinz M, Freid M, Kraehenbuhl JP, Aguzzi A (2001) Transepithelial prion transport by M cells. Nat Med 7:976–977

    Article  CAS  PubMed  Google Scholar 

  84. Bartz JC, DeJoia C, Tucker T, Kincaid AE, Bessen RA (2005) Extraneural prion neuroinvasion without lymphoreticular system infection. J Virol 79:11858–11863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kimberlin RH, Hall SM, Walker CA (1983) Pathogenesis of mouse scrapie: evidence for direct neural spread of infection to the CNS after infection of sciatic nerve. J Neurol Sci 61:315–325

    Article  CAS  PubMed  Google Scholar 

  86. Hamir A, Kunkle R, Miller J, Hall S (2006) Abnormal prion protein in ectopic lympohoid tissue in a kedney of an asymptomatic white-tailed deer experimentally inoculated with the agent of chronic wasting disease. Vet Path Online 43:367–369

    Article  CAS  Google Scholar 

  87. Heikenwaelder M, Zeller N, Seeger H, Prinz M, Klohn P-C, Schwarz P, Ruddle NH, Weissmann C, Aguzzi A (2005) Chronic lympohcitic inflammation specifies the organ tropism of prions. Science 307:1107–1110

    Article  Google Scholar 

  88. Buschmann A, Groschup MH (2005) Highly bovine spongiform encephalopathy-sensitive transgenic mice confirm the essential restriction of infectivity to the nervous system in clinically diseased cattle. J Infect Dis 192:934–942

    Article  PubMed  Google Scholar 

  89. Race R, Meade-White K, Raines A, Raymond GJ, Caughey B, Chesebro B (2002) Subclinical scrapie infection in a resistant species: persistence, replication, and adaptation of infectivity during four passages. J Inf Dis 186:S166–S170

    Article  Google Scholar 

  90. Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB (2005) Yeast prions [URE3] and [PSI +] are diseases. Proc Natl Acad Sci USA 102:10575–10580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Bateman DA, Wickner RB (2012) [PSI+] prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies ‘species barriers’. Genetics 190:569–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancster AK, Lindquist S (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Stewart FM, Levin BR (1977) The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 87:209–228

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Futcher AB, Cox BS (1983) Maintenance of the 2 μm circle plasmid in populations of Saccharomyces cerevisiae. J Bacteriol 154:612–622

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Futcher B, Reid E, Hickey DA (1988) Maintenance of the 2 micron circle plasmid of Saccharomyces cerevisiae by sexual transmission: an example of selfish DNA. Genetics 118:411–415

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Mead DJ, Gardner DCJ, Oliver SG (1986) The yeast 2 micron plasmid: strategies for the survival of a selfish DNA. Mol Gen Genet 205:417–421

    Article  CAS  PubMed  Google Scholar 

  97. Kelly AC, Shewmaker FP, Kryndushkin D, Wickner RB (2012) Sex, prions and plasmids in yeast. Proc Natl Acad Sci USA 109:E2683–E2690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Tsai IJ, Bensasson D, Burt A, Koufopanou V (2008) Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci USA 105:4957–4962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L (2006) Population genomic analysis of outcrossing and recombination in yeast. Nat Genet 38:1077–1081

    Article  CAS  PubMed  Google Scholar 

  100. Masel J, Griswold CK (2009) The strength of selection against the yeast prion [PSI+]. Genetics 181:1057–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Resende CG, Outeiro TF, Sands L, Lindquist S, Tuite MF (2003) Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol Microbiol 49:1005–1017

    Article  CAS  PubMed  Google Scholar 

  102. Kelly AC, Busby B, Wickner RB (2014) Effect of domestication on the spread of the [PIN+] prion in Saccharomyces cerevisiae. Genetics 197:1007–1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM (2000) Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35:865–876

    Article  CAS  PubMed  Google Scholar 

  104. Kushnirov VV, Kochneva-Pervukhova NV, Cechenova MB, Frolova NS, Ter-Avanesyan MD (2000) Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J 19:324–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Santoso A, Chien P, Osherovich LZ, Weissman JS (2000) Molecular basis of a yeast prion species barrier. Cell 100:277–288

    Article  CAS  PubMed  Google Scholar 

  106. Safadi RA, Talarek N, Jacques N, Aigle M (2011) Yeast prions: could they be exaptations? The URE2/[URE3] system in Kluyveromyces lactis. FEMS Yeast Res 11:151–153

    Article  PubMed  CAS  Google Scholar 

  107. Edskes HE, Khamar HJ, Winchester C-L, Greenler AJ, Zhou A, McGlinchey RP, Gorkovskiy A, Wickner RB (2014) Sporadic distribution of prion-forming ability of Sup35p from yeasts and fungi. Genetics 198:605–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Edskes HK, Engel A, McCann LM, Brachmann A, Tsai H-F, Wickner RB (2011) Prion-forming ability of Ure2 of yeasts is not evolutionarily conserved. Genetics 188:81–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Westergard L, True HL (2014) Extracellular environment modulates the formation and propagation of particular amyloid structures. Mol Microbiol 92:698–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Dalstra HJP, Swart K, Debets AJM, Saupe SJ, Hoekstra RF (2003) Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci USA 100:6616–6621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Debets AJ, Dalstra HJ, Slakhorst M, Koopmanschap B, Hoekstra RF, Saupe SJ (2012) High natural prevalence of a fungal prion. Proc Natl Acad Sci USA 109:10432–10437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Siemer AB, Ritter C, Steinmetz MO, Ernst M, Riek R, Meier BH (2006) 13C, 15N resonance assignment of parts of the HET-s prion protein in its amyloid form. J Biomol NMR 34:75–87

    Article  CAS  PubMed  Google Scholar 

  113. Paoletti M, Saupe SJ (2009) Fungal incompatibility: evolutionary origin in pathogen defense? BioEssays 31:1201–1210

    Article  CAS  PubMed  Google Scholar 

  114. Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns and evolution by horizontal gene transfer. J Mol Biol 343:1–28

    Article  CAS  PubMed  Google Scholar 

  115. Daskalov A, Paoletti M, Ness F, Saupe SJ (2012) Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLoS ONE 7:e34854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Daskalov A, Habenstein B, Martinez D, Debets AJM, Sabate R, Loquet A, Saupe SJ (2015) Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol 13:e1002059

    Article  PubMed Central  PubMed  Google Scholar 

  117. Cai X, Chen J, Xu H, Liu S, Jiang Q-X, Halfmann R, Chen ZJ (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Palmer MS, Dryden AJ, Hughes JT, Collinge J (1991) Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature 352:340–342

    Article  CAS  PubMed  Google Scholar 

  119. DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252

    Article  CAS  PubMed  Google Scholar 

  120. Asante EA, Smidak M, Grimshaw A, Houghton R, Tomlinson A, Jeelani A, Jakubcova T, Hamdan S, Richard-Londt A, Linehan JM, Brandner S, Alpers M, Whitfield J, Mead S, Wadsworth JDF, Collinge J (2015) A naturally occurring variant of the human prion protein completely prevents prion disease. Nature (in press)

  121. Mead S, Stumpf MP, Whitfield J, Beck JA, Poulter M, Campbell T, Uphill JB, Goldstein D, Alpers M, Fisher EM, Collinge J (2003) Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300:640–643

    Article  CAS  PubMed  Google Scholar 

  122. Kreitman M, Di Rienzo A (2004) Balancing claims for balancing selection. Trends Genet 20:300–304

    Article  CAS  PubMed  Google Scholar 

  123. Soldevila M, Andres AM, Ramirez-Soriano A, Marques-Bonet T, Calafell F, Navarro A, Bertranpetit J (2006) The prion protein gene in humans revisited: lessons from a worldwide resequencing study. Genome Res 16:231–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Premzl M, Gamulin V (2009) Positive selection in prion protein. J Mol Evol 68:205–207

    Article  CAS  PubMed  Google Scholar 

  125. Tsangaras K, Kolokotronis S-O, Ulrich RG, Morand S, Michaux J, Greenwood AD (2014) Negative purifying selection drives prion and doppel protein evolution. J Mol Evol 79:12–20

    Article  CAS  PubMed  Google Scholar 

  126. Seabury CM, Honeycutt RL, Rooney AP, Halbert ND, Derr JN (2004) Prion protein gene (PRNP) variants and evidence for strong purifying selection in functionally important regions of bovine exon 3. Proc Natl Acad Sci USA 101:15142–15147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Shibuya S, Higuchi J, Shin RW, Tateishi J, Kitamoto T (1998) Protective prion protein poymorphisms against sporadic Creutzfeldt–Jakob disease. Lancet 351:419

    Article  CAS  PubMed  Google Scholar 

  128. Mead S, Whitfield J, Poulter M, Shah P, Uphill J, Campbell T, Al-Dujaily H, Hummerich H, Beck J, Mein CA, Verzilli C, Whittaker J, Alpers MP, Collinge J (2009) A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med 361:2056–2065

    Article  CAS  PubMed  Google Scholar 

  129. Johnson C, Johnson J, Vanderloo JP, Keane D, Aiken JM, McKenzie D (2006) Prion protein polymorphisms in white-tailed deer influence suceptibility to chronic wasting disease. J Gen Virol 87:2109–2114

    Article  CAS  PubMed  Google Scholar 

  130. Kelly AC, Mateus-Pinilla NE, Diffendorfer J, Jewell E, Ruiz MO, Killefer J, Shelton P, Beissel T, Novakofski J (2008) Prion sequence polymorphisms and chronic wasting disease resistance in Illinois white-tailed deer (Odocoileus virginianus). Prion 2:28–36

    Article  PubMed Central  PubMed  Google Scholar 

  131. O’Rourke KI, Besser T, Miller M, Cline T, Spraker TR, Jenny A, Wild M, Zebarth G, Williams E (1999) PrP genotypes of captive and free-ranging Rocky Mountain elk (Cervus elaphus nelson) with chronic wasting disease. J Gen Virol 80:2765–2769

    Article  PubMed  Google Scholar 

  132. O’Rourke KI, Spraker TR, Zhuang D, Greenlee J, Gidlewski TE, Hamir AN (2007) Elk with a long incubation prion disease phenotype have a unique PrPd profile. Neuroreport 18:1935–1938

    Article  PubMed  CAS  Google Scholar 

  133. Williams AL, Kreeger TJ, Schumaker BA (2014) Chronic wasting disease model of genetic selection favoring prolonged survival in Rocky Mountain elk (Cervus elaphus). Ecosphere 5:Article 60

  134. Robinson SB, Samuel MD, Johnson CJ, Adams M, McKenzie DI (2012) Emerging prion disease drives host selection in a wildlife population. Ecol Appl 22:1050–1059

    Article  PubMed  Google Scholar 

  135. Johnson CJ, Herbst A, Duque-Velasquez C, Vanderloo JP, Bochsler P, Chappell RJ, McKenzie D (2011) Prion protein polymorphisms affect chronic wasting disease progression. PLoS ONE 6:e17450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Blanchong JA, Heisey DM, Scribner KT, Libants SV, Johnson C, Aiken JM, Langenberg JA, Samuel MD (2009) Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: complement component C1q and Prnp polymorphisms. Infect Genet Evol 9:1329–1335

    Article  CAS  PubMed  Google Scholar 

  137. Tranulis MA (2002) Influence of the prion protein gene, Prnp, on scrapie susceptibility in sheep. Apmis 110:33–43

    Article  CAS  PubMed  Google Scholar 

  138. Baylis M, Goldmann W (2004) The genetics of scrapie in sheep and goats. Curr Mol Med 4:385–396

    Article  CAS  PubMed  Google Scholar 

  139. Groschup MH, Lacroux C, Buschmann A, Luhken G, Mathey J, Eiden M, Lugan S, Hoffmann C, Espinosa JC, Baron T (2007) Classic scrapie in sheep with the ARR/ARR prion genotype in Germany and France. Emerg Inf Dis 13:1201

    Article  CAS  Google Scholar 

  140. Paul KR, Hendrich CG, Waechter A, Harman MR, Ross ED (2015) Generating new prions by targeted mutation or segment duplication. Proc Natl Acad Sci USA 112(28):8584–8589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Edskes HK, Wickner RB (2002) Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full-length protein. Proc Natl Acad Sci USA 99(Suppl 4):16384–16391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Baudin-Baillieu A, Fernandez-Bellot E, Reine F, Coissac E, Cullin C (2003) Conservation of the prion properties of Ure2p through evolution. Mol Biol Cell 14:3449–3458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Chen B, Newnam GP, Chernoff YO (2007) Prion species barrier between the closely related yeast proteins is detected despite coaggregation. Proc Natl Acad Sci USA 104:2791–2796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Afanasieva EG, Kushnirov VV, Tuite MF, Ter-Avanesyan MD (2011) Molecular basis for transmission barrier and interference between closely related prion proteins in yeast. J Biol Chem 286:15773–15780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Eaglestone SS, Cox BS, Tuite MF (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18:1974–1981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483

    Article  CAS  PubMed  Google Scholar 

  147. Kryndushkin D, Shewmaker F, Wickner RB (2008) Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO J 27:2725–2735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spaciotemporal distribution of protein aggregates. Mol Biol Cell 23:3041–3056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F (2012) A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol Microbiol 86:1531–1547

    Article  CAS  PubMed  Google Scholar 

  150. Miller SBM, Ho C-T, Winkler J, Khokhrina M, Neuner A, Mohamed MYH, Guilbride DL, Richter K, Lisby M, Schiebel E, Mogk A, Bukau B (2015) Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34:778–797

    Article  CAS  PubMed  Google Scholar 

  151. Newby GA, Lindquist S (2013) Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol 23:251–259

    Article  CAS  PubMed  Google Scholar 

  152. Tyedmers J, Madariaga ML, Lindquist S (2008) Prion switching in response to environmental stress. PLoS Biol 6:e294

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Kryndushkin D, Wickner RB (2007) Nucleotide exchange factors for Hsp70s are required for [URE3] prion propagation in Saccharomyces cerevisiae. Mol Biol Cell 18:2149–2154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Fan Q, Park K-W, Du Z, Morano KA, Li L (2007) The role of Sse1 in the de novo formation and variant determination of the [PSI+] prion. Genetics 177:1583–1593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Mahal SP, Browning S, Li J, Suponitsky-Kroyter I, Weissmann C (2010) Transfer of a prion strain to different hosts leads to emergence of strain variants. Proc Natl Acad Sci USA 107:22653–22658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ, Prusiner SB (2009) Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathol. 5:e1000673

    Article  CAS  Google Scholar 

  157. Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327:869–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Priem J, Langeveld JP, van Keulen LJ, van Zijderveld FG, Andreoletti O, Bossers A (2014) Enhanced virulence of sheep-passaged bovine spongiform encephalopathy agent is revealed by decreased polymorphism barriers in prion protein conversion studies. J Virol 88:2903–2912

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A, Vilotte J-L, Laude H (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335:472–475

    Article  CAS  PubMed  Google Scholar 

  160. Roberts BT, Wickner RB (2003) A class of prions that propagate via covalent auto-activation. Genes Dev 17:2083–2087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Du Z, Park K-W, Yu H, Fan Q, Li L (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 40:460–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11:344–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Holmes DL, Lancaster AK, Lindquist S, Halfmann R (2013) Hertable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153:153–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, Volkov K, Mironova L (2010) Non-mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci USA 107:10573–10577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Suzuki G, Shimazu N, Tanaka M (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336:355–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reed B. Wickner.

Additional information

Genetic nomenclature

Yeast chromosomal genes are given as URE2, SUP35, RNQ1, BTN2, etc.

Non-chromosomal genes, such as yeast prions, are shown in brackets, such as [URE3], [PSI+], [PIN+], etc.

Proteins are shown as Ure2p, Sup35p, Rnq1p, etc.

Phenotypes are shown as Ade+ or Ura−.

For the Podospora anserina system, the [Het-s] prion is due to the HET-s protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wickner, R.B., Kelly, A.C. Prions are affected by evolution at two levels. Cell. Mol. Life Sci. 73, 1131–1144 (2016). https://doi.org/10.1007/s00018-015-2109-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2109-6

Keywords

Navigation