Skip to main content

Advertisement

Log in

Signaling filopodia in vertebrate embryonic development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Next to classical diffusion-based models, filopodia-like cellular protrusions have been proposed to mediate long range signaling events and morphogen gradient formation during communication between distant cells. An increasing wealth of data indicates that in spite of variable characteristics of signaling filopodia in different biological contexts, they represent a paradigm of intercellular crosstalk which is presently being unraveled in a growing literature. Here, we summarize recent advances in investigating the morphology, cellular basis and function of signaling filopodia, with focus on their role during embryonic development in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development 141:729–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  CAS  PubMed  Google Scholar 

  3. Strigini M, Cohen SM (2000) Wingless gradient formation in the Drosophila wing. Curr Biol (CB) 10:293–300

    Article  CAS  Google Scholar 

  4. Muller P, Rogers KW, Yu SR, Brand M, Schier AF (2013) Morphogen transport. Development 140:1621–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cohen M, Page KM, Perez-Carrasco R, Barnes CP, Briscoe J (2014) A theoretical framework for the regulation of Shh morphogen-controlled gene expression. Development 141:3868–3878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bier E, De Robertis EM (2015) Embryo development. BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science 348:aaa5838

  7. Port F, Basler K (2010) Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 11:1265–1271

    Article  CAS  PubMed  Google Scholar 

  8. Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801

    Article  CAS  PubMed  Google Scholar 

  9. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  CAS  PubMed  Google Scholar 

  10. Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C (2005) beta-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 132:3895–3905

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt C, Stoeckelhuber M, McKinnell I, Putz R, Christ B, Patel K (2004) Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation. Developmental biology 271:198–209

    Article  CAS  PubMed  Google Scholar 

  12. Marcelle C, Stark MR, Bronner-Fraser M (1997) Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development 124:3955–3963

    CAS  PubMed  Google Scholar 

  13. Serralbo O, Marcelle C (2014) Migrating cells mediate long-range WNT signaling. Development 141:2057–2063

    Article  CAS  PubMed  Google Scholar 

  14. Teddy JM, Kulesa PM (2004) In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 131:6141–6151

    Article  CAS  PubMed  Google Scholar 

  15. Yan D, Wu Y, Feng Y, Lin SC, Lin X (2009) The core protein of glypican Dally-like determines its biphasic activity in wingless morphogen signaling. Dev Cell 17:470–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bischoff M, Gradilla AC, Seijo I, Andres G, Rodriguez-Navas C, Gonzalez-Mendez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 15:1269–1281

    Article  CAS  PubMed  Google Scholar 

  17. Stanganello E, Hagemann AI, Mattes B, Sinner C, Meyen D, Weber S, Schug A, Raz E, Scholpp S (2015) Filopodia-based Wnt transport during vertebrate tissue patterning. Nat Commun 6:5846

    Article  CAS  PubMed  Google Scholar 

  18. Holzer T, Liffers K, Rahm K, Trageser B, Ozbek S, Gradl D (2012) Live imaging of active fluorophore labelled Wnt proteins. FEBS Lett 586:1638–1644

    Article  CAS  PubMed  Google Scholar 

  19. Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497:628–632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sagar, Prols F, Wiegreffe C, Scaal M (2015) Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development 142:665–671

    Article  CAS  PubMed  Google Scholar 

  21. Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607

    Article  CAS  PubMed  Google Scholar 

  22. Roy S, Hsiung F, Kornberg TB (2011) Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332:354–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sato M, Kornberg TB (2002) FGF is an essential mitogen and chemoattractant for the air sacs of the drosophila tracheal system. Dev Cell 3:195–207

    Article  CAS  PubMed  Google Scholar 

  24. De Joussineau C, Soule J, Martin M, Anguille C, Montcourrier P, Alexandre D (2003) Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426:555–559

    Article  PubMed  Google Scholar 

  25. Roy S, Huang H, Liu S, Kornberg TB (2014) Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343:1244624

    Article  PubMed Central  PubMed  Google Scholar 

  26. Rojas-Rios P, Guerrero I, Gonzalez-Reyes A (2012) Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. PLoS Biol 10:e1001298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gradilla AC, Guerrero I (2013) Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res 352:59–66

    Article  CAS  PubMed  Google Scholar 

  28. Austefjord MW, Gerdes HH, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol 7:e27934

    Article  PubMed Central  PubMed  Google Scholar 

  29. Caneparo L, Pantazis P, Dempsey W, Fraser SE (2011) Intercellular bridges in vertebrate gastrulation. PLoS One 6:e20230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Salas-Vidal E, Lomeli H (2004) Imaging filopodia dynamics in the mouse blastocyst. Dev Biol 265:75–89

    Article  CAS  PubMed  Google Scholar 

  31. Danilchik M, Williams M, Brown E (2013) Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: potential roles in morphogen distribution and detection. Dev Biol 382:70–81

    Article  CAS  PubMed  Google Scholar 

  32. Snyder JC, Rochelle LK, Marion S, Lyerly HK, Barak LS, Caron MG (2015) Lgr4 and Lgr5 drive the formation of long actin-rich cytoneme-like membrane protrusions. J Cell Sci 128:1230–1240

    Article  CAS  PubMed  Google Scholar 

  33. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  34. Gerdes HH, Rustom A, Wang X (2013) Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 130:381–387

    Article  CAS  PubMed  Google Scholar 

  35. McMahon AP, Hasso SM (2013) Filopodia: the cellular quills of hedgehog signaling? Dev Cell 25:328–330

    Article  CAS  PubMed  Google Scholar 

  36. Fairchild CL, Barna M (2014) Specialized filopodia: at the ‘tip’ of morphogen transport and vertebrate tissue patterning. Curr Opin Genet Dev 27:67–73

    Article  CAS  PubMed  Google Scholar 

  37. Luz M, Spannl-Muller S, Ozhan G, Kagermeier-Schenk B, Rhinn M, Weidinger G, Brand M (2014) Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm. PLoS One 9:e84922

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316:1619–1622

    Article  CAS  PubMed  Google Scholar 

  39. Hagemann AI, Kurz J, Kauffeld S, Chen Q, Reeves PM, Weber S, Schindler S, Davidson G, Kirchhausen T, Scholpp S (2014) In vivo analysis of formation and endocytosis of the Wnt/beta-catenin signaling complex in zebrafish embryos. J Cell Sci 127:3970–3982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Rifes P, Thorsteinsdottir S (2012) Extracellular matrix assembly and 3D organization during paraxial mesoderm development in the chick embryo. Dev Biol 368:370–381

    Article  CAS  PubMed  Google Scholar 

  41. Koizumi K, Takano K, Kaneyasu A, Watanabe-Takano H, Tokuda E, Abe T, Watanabe N, Takenawa T, Endo T (2012) RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C. Mol Biol Cell 23:4647–4661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lidke DS, Lidke KA, Rieger B, Jovin TM, Arndt-Jovin DJ (2005) Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J Cell Biol 170:619–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  CAS  PubMed  Google Scholar 

  44. Munsie LN, Caron N, Desmond CR, Truant R (2009) Lifeact cannot visualize some forms of stress-induced twisted F-actin. Nat Methods 6:317

    Article  CAS  PubMed  Google Scholar 

  45. Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23

    Article  CAS  PubMed  Google Scholar 

  46. Winterhoff M, Faix J (2015) Actin-filament disassembly: it takes two to shrink them fast. Curr Biol (CB) 25:R450–R452

    Article  CAS  Google Scholar 

  47. Chesarone MA, Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022

    Article  CAS  PubMed  Google Scholar 

  49. Hashimoto Y, Kim DJ, Adams JC (2011) The roles of fascins in health and disease. J Pathol 224:289–300

    Article  CAS  PubMed  Google Scholar 

  50. Boer EF, Howell ED, Schilling TF, Jette CA, Stewart RA (2015) Fascin1-dependent Filopodia are required for directional migration of a subset of neural crest cells. PLoS Genet 11:e1004946

    Article  PubMed Central  PubMed  Google Scholar 

  51. Breitsprecher D, Koestler SA, Chizhov I, Nemethova M, Mueller J, Goode BL, Small JV, Rottner K, Faix J (2011) Cofilin cooperates with fascin to disassemble filopodial actin filaments. J Cell Sci 124:3305–3318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Winkelman JD, Bilancia CG, Peifer M, Kovar DR (2014) Ena/VASP enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc Natl Acad Sci USA 111:4121–4126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Clay MR, Halloran MC (2010) Control of neural crest cell behavior and migration: insights from live imaging. Cell Adhes Migr 4:586–594

    Article  Google Scholar 

  54. Gressin L, Guillotin A, Guerin C, Blanchoin L, Michelot A (2015) Architecture dependence of actin filament network disassembly. Curr Biol (CB) 25:1437–1447

    Article  CAS  Google Scholar 

  55. Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20:187–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bohil AB, Robertson BW, Cheney RE (2006) Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci USA 103:12411–12416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Berg JS, Cheney RE (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4:246–250

    Article  CAS  PubMed  Google Scholar 

  58. Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, Bhaskar A, Cheney RE, Stromblad S (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6:523–531

    Article  PubMed  Google Scholar 

  59. Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500

    Article  CAS  PubMed  Google Scholar 

  60. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Arjonen A, Kaukonen R, Mattila E, Rouhi P, Hognas G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P, Virtakoivu R, Cao Y, Sansom OJ, Joensuu H, Ivaska J (2014) Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Investig 124:1069–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Cao R, Chen J, Zhang X, Zhai Y, Qing X, Xing W, Zhang L, Malik YS, Yu H, Zhu X (2014) Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. Br J Cancer 111:539–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Duquette PM, Lamarche-Vane N (2014) Rho GTPases in embryonic development. Small GTPases 5:8

    Article  PubMed  Google Scholar 

  64. Lee K, Gallop JL, Rambani K, Kirschner MW (2010) Self-assembly of filopodia-like structures on supported lipid bilayers. Science 329:1341–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9:86–92

    Article  CAS  PubMed  Google Scholar 

  66. Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:93–96

    Article  CAS  PubMed  Google Scholar 

  67. Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F (2008) Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133:340–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Theveneau E, Mayor R (2010) Integrating chemotaxis and contact-inhibition during collective cell migration: small GTPases at work. Small GTPases 1:113–117

    Article  PubMed Central  PubMed  Google Scholar 

  69. Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    Article  CAS  PubMed  Google Scholar 

  70. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  71. Nobes C, Marsh M (2000) Dendritic cells: new roles for Cdc42 and Rac in antigen uptake? Curr Biol (CB) 10:R739–R741

    Article  CAS  Google Scholar 

  72. Bosco EE, Mulloy JC, Zheng Y (2009) Rac1 GTPase: a “Rac” of all trades. Cell Mol life Sci (CMLS) 66:370–374

    Article  CAS  Google Scholar 

  73. Fleming TP, Warren PD, Chisholm JC, Johnson MH (1984) Trophectodermal processes regulate the expression of totipotency within the inner cell mass of the mouse expanding blastocyst. J Embryol Exp Morphol 84:63–90

    CAS  PubMed  Google Scholar 

  74. Fierro-Gonzalez JC, White MD, Silva JC, Plachta N (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433

    Article  CAS  PubMed  Google Scholar 

  75. Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146:1097–1106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  PubMed  Google Scholar 

  77. Yoo J, Kambara T, Gonda K, Higuchi H (2008) Intracellular imaging of targeted proteins labeled with quantum dots. Exp Cell Res 314:3563–3569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to apologize to the authors whose work we could not mention in this review for reasons of space. We thank the Deutsche Forschungsgemeinschaft (DFG, SFB591 grant to M.S.), the Imhoff Stiftung, Cologne (to M.S.) and the Moritz-Stiftung, Cologne (to F.P.) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Scaal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pröls, F., Sagar & Scaal, M. Signaling filopodia in vertebrate embryonic development. Cell. Mol. Life Sci. 73, 961–974 (2016). https://doi.org/10.1007/s00018-015-2097-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2097-6

Keywords

Navigation